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Outline

e Thermal Hydraulic Limit Testing
e Fuel Plate Stability Testing

e Flow Blockage Testing
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The ANS Reactor Has Unique Thermal-Hydraulic
Characteristics in Comparison to Other Research

and Commercial Reactors
—

e Heavy water coolant

e Parallel Rectangular channels (involute)

e Very small channel gap (1.27 mm)

® Very high velocity (25 m/s)

e Very high exit subcooling (110°C)

® Moderately high heat flux (5.9 MW/m2 average and 12 MW/m2 maximum)
e High average power density (4.5 MW/L)

e Large L/D (200)

ORNL-DWG 95-2310 ETD . Advanced Neutron Source
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Thermal Hydraulic Testing

Objective: To determine experimentally the appropriate core thermal
hydraulic limits at ANS conditions.



Advanced Neutron Source (ANS) Thermal Hydraulic Test Loop (THTL)
Was Designed to Operate in "Stiff", "Soft" and "Modified Stiff" Modes
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Direct Resistance Heating of the Rectangular Cross-Section
of the Channel in the Thermal Hydraulic Test Loop
Provided Some Challenges

e 1.27-mm X 12.7-mm rectangular channel
e Full length - 507 mm
o Directly heated using dc current
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Range of Flow Excursion Tests Performed Is Beyond
Any Data Range Previously Available

e Coolant: Water
e Inlet coolant temperature: 45 and 400C

e Exit coolant pressure: 1.7 (and 0.45, 0.17) MPa
® EXxit heat flux range: 0.7-18 MW/m2

e Corresponding exit velocity range: 2.8 —28.4 m/s

e Channel configuration: rectangular, 1.27 X 12.7 X 507 mm, aluminum

ORNL-DWG 95-2312 ETD

Advanced Neutron Source



Destructive CHF Tests Performed in a “Stiff” System Showed a
30% Additional Margin in Critical Velocity Compared to the

Flow Excursion Velocity (Minimum Pressure Drop). Bypass
Flow Ratio (BPR) Does Effect the Point of Destructive
Flow Excursion.
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The Modified St Number Correlation Compares Well With
the Data Trends and Is Consistent With Its Definition.
The Extreme Data Point at Very Low Subcooling
Strongly Supports this Conclusion.

a THTL Data
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Summary of Thermal Hydraulic Limit
Testing and Analysis

* FE data has been acquired at ANS typical flow
velocities

» An extensive OSV/OFI data base has been
developed with a very broad parameter range

o A modification of the Saha-Zuber correlation was
proposed to account for reduced subcooling effects

» Closeout activities include continued investigation
of wider span test channels

o Some testing for HFIR will be performed to
evaluate the effect of reduced channel gap

e Future plans called for additional testing at 3-core
conditions, hot spot testing, etc.
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Fuel Plate Stability Testing

Objective: To experimentally evaluate the structural response of ANS
fuel plates to hydraulic loads.
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Plate Deflection Was Found to be Proportional to the Pressure Load
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PRESSURE COEFFICIENT AND REYNOLDS' NUMBER
RELATED TO YIELD PRESSURE LOAD ON PLATES

DERIVED FROM EXPERIMENTAL FLOW DATA
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Summary of Fuel Plate Stability Testing

(1)

(2)

A Method Has Been Developed to Predict
Structural Response of Fuel Plates to
Hydraulic Loading

Prediction of AP across plates

Determine deflection/stress levels using
structural analysis

ANS Specific Conclusions:

No evidence of potential plate collapse in the
coolant velocity range from 0-50 m/s

No evidence of plate flutter with coolant
velocities below 33 m/s

Local stress levels appear to dictate plate limits
as opposed to plate deflection
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Flow Blockage Testing

Objective:  To experimentally determine local thermal and fluid
behavior downstream of a core inlet blockage.



Flow Blockage Testing

Coolant - H,0

8 — Hydraulic tests using LDV
25 — Thermal tests using TLCs

Flow velocity range : 5 - 25 m/s

Blockage sizes : Center - 15%, 25%, 35%, 40%
Edge - 10%, 25%
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CFD results are in close agreement with experimental data
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Reattachment Lengths
for 1.4 MPa Pressure Drop (mm)

Blockage | Blockage Fluent Model LDV Data
Size Position
Near wall Channel
center
15% Center 37 34 x <27
35% Center 80 80 x <27
25% Edge 74 74 60 <x <90




Summary of Flow Blockage Testing
and Analysis

e CFD code has been benchmarked against
prototypic ANS flow conditions and geometry

e CFD analysis appears to be conservative with
respect to experimental results

e Unheated entrance length was increased to prevent
localized boiling downstream of blockage

e Closeout testing will focus on determining the
importance of blockage shapes on local cooling

e Next step would have been to evaluate alternate
core inlet designs
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