

The Jules Horowitz Reactor (JHR) Project

Experimental capabilities

Authors:

C.Pascal (AREVA), Y.Demoisy (AREVA), X.Bravo (CEA), S.Gaillot (CEA), F.Javier (CEA).

stephane.gaillot@cea.fr

Outlines

- Introduction
- Irradiation experiments requirements
- JHR capabilities
- Conclusion

Introduction

he Jules Horowitz Reactor (JHR) is a modern experimental capability for studying materials and fuels behaviours under irradiation:

upports to Nuclear Power Plants of generations II and III,

Radio-isotopes production for medical applications.

The conception takes into account:

operations

- Fast flux performances in the core able to perform important damages on materials,
- Thermal flux performances in the reflector to reach high power on fuel samples,

 Integration of equipments allowing carrying CADARA COUT complete experimental irradiations / IGORR 10 Joint Meeting

Irradiation experiments requirements

JHR capabilities

A driver core

An experimental area:

located around the core,

- √ 14 experimental cubicles,
- ✓ I&C rooms surfaces on 2 floors,
- √ 11 penetrations
 penetrations with the reactor
 pool.

Nuclear
Auxilliary
Building
(NAB)

Reactor

Building

Four hot cells:

- Pre-and post irradiation operations (conditioning, examinations),
- ✓ Alpha cell for experiments with contamination risks.

Dosimetry laboratory:

Quick access of the fluence integrated by the samples.

Support Buildings

Differents utilities supports (workshops)

Experiments preparation with limital external transports.

Phase 1, Reception and preliminary tests

> Irradiated samples (fuels and materials):

Back zone of the cells:

Vertical and horizontal connections,

Storage pool of components:

 Possibility to accept casks for underwater loading.

> Devices :

Cold workshop:

- Final assembling,
- Controls,
- Test benches.

Hot workshop:

- New fuel loading operations,
- Device transfer in the facility,
- Recovery of irradiated components for re-using.

Phase 2, Irradiation phase (1/3): Driver Core

Main design features:

- Pool reseach reactor operating up to 100MW_{th}.
- Cooling and moderate by forced ciculation of light water in pressurised circuit.
- Surrounded by a modular reflector of beryllium cooled by the pool water.
- Fully compatible with radial power ramps on the fuels samples in the reflector.

Reference core configuration

High fluxes requirements for high dpa irradiation (up to 16 dpa/y).

- 10 irradiations inside the core
 - 7 small (32mm)in the center of fuel element
 - 3 large (50mm) instead of a fuel element
 - 6 in the reflector on displacement systems
- 6 in the reflector on fixed positions
- 9 radio isotopes production devices in the reflector

Phase 2, Irradiation phase (2/3): Irradiation devices

- Displacement systems
 - Performances:
- Maximal linear power :
 600 W.cm⁻¹

(1% U₅ fuel enrichissement)

Power ramps:
 200 to 600 W.cm⁻¹.min⁻¹

Fuel power = F(location)
analytical studies

6 systems around the core

Phase 2, Irradiation phase (3/3): Experimental area

- A Fission products laboratory
- ✓ FP activities measurements in water :
- Following on line the releases of FP of non tight fuels rods,
- ✓ FP activities measurements in gases :(high levels countings):
- On line fission gas releases,
- Activity release in case of accidental scenario ,...
- ✓ FP fission gases measurements(low activities) :
- Fission gas releases from HTR or GFR during stable or specific transients,
- ✓ Post-experiments measurements :
- Activities of liquid and fission samples during a long period (few days to few months),

Phase 3, Recovery of the samples

Polyvalent cells for Material and fuels

Alpha cell

Cell for Radio-isotops conditionning

- Hot cells
- ✓ One for radio-isotopes recuperation and conditioning.
- ✓ Two polyvalent hot cells for experiments on materials and not damaged fuels,
- ✓ Alpha cell.

- ✓ Fuel experiment with clad failure in normal conditions (alpha device),
- ✓ Fuel experiment in degradated situation (standard device - non alpha),
- Devices dismantlement with contamination risks,
- ✓ Re-use of some parts of the alpha device (sample holder, device envelopes).
- → Specific tight-interface at the inlet of the cell,

Decontamination systems inside the cell

Phase 4: Non Destructive Examinations (NDE)

- ✓ Control of the global aspects of the fuel rods or material samples after the transport or after irradiation sequences,
- ✓ Burn-Up & Fission Products inventory determination,
- ✓ Fission gas releases determination in the top of the device (LOCA experience),
- ✓ Verification of REA qualities,...

· In the pools,

Gamma-scanning Neutronography,

· In the hot cells,

Visual,

Microscopy,

Eddy curents,...

NDE equipments in the hot cells

Conclusion:

The Jules Horowitz Reactor, modern and performant has the capabilities to:

- ✓ Manage multiple and various experiments,
- ✓ Offer global prestations and equipments adapted with the customers needs.
- ✓ Equiped with specific alpha cell and on-line fission products laboratory allowing to drive and characterise experiments on non tight samples,

With a international users-facility vocation, the JHR will statisfy the irradiations requirements of the MTR community in the next decades.

