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High Flux Isotope Reactor

• Highest thermal flux in world
• Pressurized LW cooled and 

moderated
• Beryllium reflected

• Fuel: Al clad U3O8 plates

-9.4 Kg 235U
• 24 days fuel cycle @85 MW

•100-MW (currently operating at 85 MW)
Reactor Building

Guide Hall/Wave Guides under construction



  

HFIR configuration is simple in concept 
– an interesting challenge to model 

• Compact core— high-
power density

• Flux-trap design
• Concentric cylinders

-  Target
-  Fuel
-  Control
-  Reflector 
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Grading – varying the relative 
thicknesses of the fuel and 

aluminum filler regions – minimizes 
power peaking.



  

Fuel “meat” distributions



  

Existing model (Smith, Gehin originators) 
updated to April 2004 and documented.

From Modeling of the High Flux 
Isotope Reactor Cycle 400, ORNL/TM-
2004/251, August 2005
Contains description of MCNP model 
and comparison to engineering 
drawings.
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BENCHMARK RESULTS

1.7412Fission neutrons produced per neutron 
absorbed (capture + fission) in cells w/ fission

0.023304 ev.Average neutron energy causing fission 

2.439Number of neutrons produced per fission

1.00870 ± 
0.00013

keff 
(combined collision/absorption/track-length)

• Six critical experiments exist for HFIR, have been 
modeled with diffusion theory (VENTURE) by RTP.

• Future work will be to model with MCNP
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MCNP has existed for more than 25 years 
and you’re just doing this now?!

• “Licensing” meaning safety analyses, based on 
experiments conducted in early 60s.

• Generally, until recently, measurements bounded 
operating and some transient conditions

• Diffusion theory models existed since 1970s and were 
benchmarked; discrete ordinates models developed 
during 80’s and 90’s.

• MCNP models of HFIR have existed at ORNL for at 
least 10 years but were not documented or poorly 
documented; did not meet today’s DOE requirements 
for software quality assurance



  

New projects spurred need for developing a 
model to current DOE software standards

• Installation of cold source at ORNL
• Installation of two new hydraulic tubes in the 

central target region of the reactor
• Proposal for installation of “internal Be 

reflector” in target region of the reactor
• Consideration of longer cycle length achieved 

via increased 235U loading (density) – to be 
discussed at Winter 2005 ANS meeting

• Request to establish LEU fuel development 
criteria



  

Application – prediction of heating rates 
in cold source moderator vessel

• Liquid hydrogen flows 
inside Al vessel with He 
coolant

• Al has heating from 
prompt fission gamma, 
delayed gamma, neutron 
absorption, activation 
product decay

• Total heating rates 
calculated by Slater 
verified earlier work by 
Bucholz, ORNL

• Hottest spot for nominal 
conditions at reactor 
power of 85 MW – 2.6 
W/g



  

Application – irradiation experiment safety
Number of hydraulic tubes increased
from one to three in June 2005. • Tube allows access to the 

high flux region with the 
reactor operating

• Each tube can 
accommodate 
9 targets

• MCNP model 
to be used for 
estimating 
target worth 
and heat rates

• Model validated with Cd 
rabbit measurements, C. O. 
Slater, ORNL/TM-2005/94 
and activation wires, D. E. 
Peplow, ORNL/TM-2004/237

Measured worths varied from 1 to 
50 cents.  Calculations agreed with 
measurements to within one 
standard deviation (5 cents).



  

 Improve neutron 
economy

 Investigate the use of 
beryllium rods in the 
target region to 
increase the 
reactivity of the HFIR 

Consequently 
increase the fuel 
cycle length

Confirm that 
perturbation in power 
profile acceptable Target Basket in Fuel Element

Application of Model 
Study of internal Be reflector



  

Beryllium Loading Arrangements
5 Cases 

Investigated

Case 4

Case 2

Case 3Case 1

Case 5



  

171.320.013021.02132 ± 0.00013Case 5—Be reflector over target region

165.790.01261.02090 ± 0.00023Case 4—central solid Be reflector

73.030.005551.01418 ± 0.00012Case 3—18 beryllium rods PTP

79.610.006051.01468 ± 0.00012Case 2—18 beryllium rods

56.320.004281.01258 ± 0.00013Case 1—12 beryllium rods

——1.00863 ± 0.00012Cycle-400

(cents)(absolute)

Increase in reactivityFinal keff
(col/abs/trk len) Case number or reference

MCNP calculation results for Be reflector effect 
on BOC core reactivity 

(HFIR costs “50 cents-a-day” to run, consumes about 50 cents of 
reactivity per day of operation at 85 MW.)



  

Application of Model - 
Fuel cycle and core depletion

 The model can be automatically linked to the Origen 
code, to perform core depletion studies

 Linkage codes; Monteburns, Aleph, others

 The capability of calculating K-eff, fuel isotopic 
composition, fluxes, fission rate, and other neutronics  
parameters at any point in the cycle

 Complete picture throughout the cycle of the effect of any 
design changes, or improvements to HFIR

 Estimate the fuel cycle length of loading new fuels and 
enrichments



  

I
Application of Model -

Study of increased fuel loading
Unroded Core K_eff constant Burnup @85MW
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Complete results will be presented at the 2005 ANS Winter conference



  

During FY06, low enriched uranium (LEU) 
fuels will be studied with the MCNP model

• Will be used to verify results of deterministic HFIR models 
(VENTURE diffusion theory; ATTILA finite element)

• When existing HEU loading “changed” in MCNP model to 
LEU (20% enriched, same 235U spatial distribution; same 
control element position), keff at BOC decreases from 1.008 
to 0.930 ($10 loss in reactivity due to 238U)

• Criticality can be achieved by removing control elements 
from the core; comparison with VENTURE shows cycle 
length reduced from ~24 to ~4 days

• With LEU fuel, average U density in “meat” region of plate 
increases from ~1 g/cc to ~5 g/cc

• Re-affirm 1997 conclusion from Argonne studies that U-
molybdenum alloy is needed to obtain U densities that 
could maintain HFIR flux performance with LEU



  

Conclusions
 The MCNP model is a 3-D detailed and accurate 

representation of the HFIR cycle 400
 Benchmark calculations of eigenvalues, neutron fluxes, 

and reaction rates were performed using the model and 
compared with other published and or measured values

 Model can accurately calculate reactor parameters with 
reasonable confidence

 Model input in any region can easily be modified, in order 
to incorporate design changes, or experiments loading

 Benchmark results are used as a reference to study the 
effect of new designs, modifications, and experiments


