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Fission chambers overview (1)

e«

FC are well-known and widely used neutron detectors

= Versatile detector : various geometry and sizes, different
Isotopes, several operating modes

= Well adapted for reactors incore monitoring (among with
SPND, thermocouple, gamma thermometer,...)

Often used in various reactors applications
= Power reactors : incore/excore flux monitoring

= Material Testing Reactors : experimental device
instrumentation (thermal and fast neutrons measurements)

= Zero Power Reactors : neutronic measurements (reactivity
i measurements, spectrum studies...)

EOLE: zero power reactor facility m FUsjon reactors : flux monitoring (e.g. in blanket modules)
(CEA, Cadarache)
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0 Fission chambers overview (2)

CEA develops miniature and sub-
miniature FC for in core applications

= Several geometries (8mm, 4mm, 3mm,
1.5mm),

= Large choice of isotopes : 23°U, 233U,
237Np’ 232Th’ 242PU,...

= Different gas and pressure,
= Integrated or stand alone cable.
Fission chambres are designed and
manufactured at CEA Cadarache with
the collaboration of PHOTONIS (FC

parts) and Thermocoax (measurement
cables)
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Fission chambers principle (1)

e«

A typical fission chamber
= Cylindrical geometry
» Fissile deposit on the anode
= Gas Ar+4%N, @ 5 bars

Neutrons

Fission product
Insulator

Cathode Gas (P bars) Fissile deposit Anode
(chamber body) (thin layer)
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Fission chambers principle (2)

Current signal is generated by secondary charges when fission
products crosses the electrodes gap

* In normal conditions, signal S is proportionnal to fission rate F

» Factor K depends on technological parameters (gas, pressure,
bias, operated mode)

S=KxF

Fission rate F depends on the neutron flux ¢ (and spectrum) and
depends on the fissile deposit composition

» |sotopes composition evolves with time (sometimes quickly)
» Neutrons energy spectrum must be well known

F(1)= [ 2 Ny ()0, (E)0(E.T(0),1)-dE

0 Iso
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e«

Fission chambers modeling and design (2)

lonization chamber modeling is based on the Garfield code

= Simulates the charges collection

= Gives the resulting current at the electrodes

= We also use third party tools :

» SRIM models the ion-gas interaction,

MAGBOLTZ calculates electrons drift parameters in the gaz,

» SPICE takes into account the preamplifier stage

GARFIELD

Geometry/ voltage FC

I » CELL

w
Hian

Gas composition

\

Electric Field

e speed
# Diffusion

dE/dx
Range
Straggling

v\ge

Townsend

Cluster distribution
» efions arrival time

Dirift volume

PF initial direction /

Induced current

Fl:

=nIIlIlIIIIlIIIIlIII!{.|I1 IIII|IIJI|IIII

L . s | | L .
0.0 T ETH [ [ ] [ 006
¥ (em)

Charge density in the electrodes gap for two FC geometries

CA D/Kié ACHE IGORR 12 - 2009 - Beijing - China 10



e Fission chambers modeling and design (3)
Fissile deposit modeling is based on DARWIN 2.2 code
= Calculates fissile deposit isotopic evolution over time
= Calculates total fission cross sections
» Needs neutron flux and spectrum

JEF2.2 library
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C@J Fission chambers manufacturing (1)

The CHICADE facility (CEA Cadarache) is authorized to produce
and distribute special fission chambers with exotic fissile
coating (*3’Np, 23°Pu, ?42Pu, %32Th,...)

First step : Fissile material deposition
= Done with electro deposition in a dedicated glove-box,
» The deposit mass is hot measured in situ but assessed afterwards,
= |sotopic composition is measured by mass spectroscopy (TIMS).
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CEZ] Fission chambers manufacturing (2)

Second step : Detector assembly

= Fission chamber kits are provided by PHOTONIS (it
includes chamber body, electrodes, insulator, etc.)

» TIG welding for large detectors (8mm and 4mm)
» Laser welding for small detectors (3mm and 1.5mm)
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Fission chambers manufacturing (3)

e«

Third step : Filling gas
= High temperature heating
= Gas filling up (Ar, Ar+N, or other mixtures)

Last step : Post manufacturing tests

= |nsulation resistance test (FC and cables)
= X irradiation (for gas pressure test)
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e Current developments (1)
Online fast neutrons measurements in MTR : FNDS project
= Experimental device instrumentation : high thermal flux, high

@ a=p gamma field, high fluence (up to 102'n/cm2)

Development in the framework of the Joint Instrumentation Lab
CEA-SCK<CEN

Joint Instrumentation Laboratory

Projects main phases

= Development of a dedicated detector (*4°Pu, 3mm, Ar+4%N,, 5
bars)

= New data acquisition system operating in Campbell mode
= System has been qualified at BR2 reactor in 2009
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CEJ Current developments (2)

FNDS qualification : first results

» FICTIONS-8 experimental device : 14 FC (Pu242 and U235)
operating in Campbell mode

= |rradiation during 2 reactor cycles (fluence ~8.10%° n/cm2)
= Online fast and thermal monitoring
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Current developments (3)

e«

Future developments

* Flux moniroring and safety for fast reactors (accident
detection),

= Neutron noise measurements (core vibrations),

= Development of a versatile data acquisition system in
Campbell mode (wide range measurement system).
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