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ABSTRACT 
 

The effective delayed neutron fraction, βeff, and the prompt neutron generation time, 
Λ, in the point kinetics equation are weighted by the adjoint flux to improve the 
accuracy of the reactivity estimate. Recently the Monte Carlo (MC) kinetics 
parameter estimation methods by using the self-consistent adjoint flux calculated in 
the MC forward simulations have been developed and successfully applied for the 
research reactor analyses. However these adjoint estimation methods based on the 
cycle-by-cycle genealogical table require a huge memory size to store the pedigree 
hierarchy. In this paper, we present a new adjoint estimation in which the pedigree 
of a single history is utilized by applying the MC Wielandt method. The effectiveness 
of the new method is demonstrated in the kinetics parameter estimations for infinite 
homogeneous two-group problems and the Godiva critical facility. 

 

 
1.      Introduction 

 
Reactor kinetics parameters such as the effective delayed neutron fraction, βeff, and the 
prompt neutron generation time, Λ, in the point kinetics equation are weighted quantities. The 
self-consistent adjoint function (adjoint flux hereafter) from the solution to a relevant steady-
state adjoint eigenvalue equation is preferred as a weighting function in order to improve the 
accuracy of the reactivity estimate in the point kinetics equation [1-3].  
 

Recently, the Monte Carlo (MC) adjoint estimation techniques [4-6] which enables one to 
compute the adjoint flux in the MC forward calculations have been developed and 
successfully applied to the adjoint-weighted kinetics parameter estimation for research 
reactors. In these methods, the adjoint flux is interpreted as a distribution proportional to the 
number of fission neutrons or fissions produced in the n-th generation due to a unit source 
neutron as n approaches infinity, which is well known as the iterated fission probability (IFP) 
[7]. The inaccuracy problem in the MC kinetics parameter calculations caused by the constant 
source adjoint function [6] has been overcome by using the adjoint flux as the weighting 
function. However the current MC adjoint-weighted kinetics parameter estimation methods 
may require a huge memory size to store the genealogical table for all the neutron histories of 
the fission source generations as many as the adjoint convergence length, n as the number of 
histories per cycle or n increases. 
 

In order to solve the huge memory consumption problem in the current methods, we present 
a new adjoint estimation in which the pedigree of a single history is utilized by applying the 
MC Wielandt method [8]. The Wielandt method allows the estimations of the adjoint flux and 
adjoint-weighted parameters within a single cycle neutron simulations. The effectiveness of 
the new method is demonstrated in the kinetics parameter estimations for infinite 
homogeneous two-group problems and the Godiva problem [9]. 
 
 
 
 

 



2.      Adjoint Estimation in the MC Wielandt Method 
 
2.1    Adjoint Estimation in the MC Eigenvalue Calculations 

 
The steady-state neutron transport equation can be written in an operator notation as 

1
k

φ φ=T F .                                               (1) 

φ is the angular flux and k is the eigenvalue. T and F denote the net loss operator and the 
fission production operator, respectively, which are defined by 
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Σt, Σs, and Σf are the total, scattering and fission cross sections, respectively. ν is the mean 
number of fission neutrons produced from a fission reaction. χ is the energy spectrum of 
fission neutrons. 
 

By operating 1(1 / )k −FT  on both sides of Eq. (1), it can be expressed as 

1S S
k

= H .                                                            (4) 

The fission source density (FSD), S  and the fission operator, H  are defined as 
1S
k

φ≡ F ,                                                            (5) 
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When P  denotes the state vector of a neutron in the six-dimensional phase space, ( , , )Er Ω , 

SH in Eq. (4) implies  
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where ( )H ′ →P P  means the number of first-generation fission neutrons born per unit phase 
space volume about P , due to a parent neutron born at ′P . 
 

Corresponding to Eq. (1), the adjoint eigenvalue equation for the adjoint flux, †φ  can be 
written as 

† † † †1
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where the adjoint operators are defined by 
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Then operating ( ) 1† −
T  on both sides of Eq. (8) gives 
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By applying the power method to Eq. (11) and taking the unity as an initial distribution, the 
fundamental mode solution, †

0φ  can be obtained by [10] 
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0k  is the fundamental mode eigenvalue. Note that ( )nH ′→P P  is the number of the n-th 

generation fission neutrons born per unit phase space volume about ′P , due to a parent 
neutron born at P  and that †

0, ( )nφ P  is normalized to satisfy †
0, 0( ) ( ) 1n S dφ =∫ P P P . Thus 

†
0 ( )φ P  can be calculated by scoring the fission neutrons produced at the n-th generation 

starting from the fission source at P  by using the genealogical table of fission sources, where 
n is named the convergence interval of the adjoint flux [10].  
 
2.2    Adjoint Estimation in the MC Wielandt Calculations 

 
Subtracting (1 )ek SH  from each side of Eq. (4) yields the eigenvalue equation of the 
Wielandt method as 
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where I  is the identity operator and ek  is an estimated eigenvalue. 
 

By operating ( ) 1
ek −−I H on both sides of Eq. (14), S  can be expressed as 
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The Taylor series expansion of ′H of Eq. (16) can be written as [11] 
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In the MC eigenvalue calculations with the Wielandt method, the FSD is updated cycle-by-
cycle as 

( 1) ( ) ( 1)
( )

1 1i i i
i

e

S S
k k

ε+ +⎛ ⎞
′= − +⎜ ⎟

⎝ ⎠
H .                                           (18) 

i  is the cycle index. ( 1)iε +  denotes the stochastic error component  of ( 1)iS +  [12]. 
 
Then the insertion of Eq. (17) into Eq. (18) yields 
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From Eq. (19), the MC Wielandt algorithm [8] can be interpreted as the fission source of the i’-
th generation in cycle i, ( ),i iS ′  produces the next-cycle fission source as many as  

( )( ) ( ),1 1i i i
ek k S ′− H  while ( ) ( ) ( )( ), , 11 i i i i

ek S S′ ′+=H  is generated as the (i’+1)-th source for 

the current cycle simulations. 
 



From Eqs. (19) and (20), we can clearly see that the generation-by-generation updates of the 
FSD are performed in a cycle of the MC Wielandt calculations. Therefore the adjoint flux 
based on Eq. (13) can be estimated within a single cycle by using a single history pedigree 
table. 
 

Assuming that n is large enough to ensure the convergence of the adjoint flux, the number of 
the fission neutrons generated for the ( )i n′ + -th generation becomes the adjoint flux of a 

fission source neutron at generation i′ . Therefore the adjoint flux at P  from ( ), ( )i iS ′ P  can be 
calculated by 
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where ( ) ( )( ), , ( )i i n i iS S′ ′+ ′P P  is the fission source distribution produced from ( ), ( )i iS ′ P  at n 

generations apart. W  can be obtained from the normalization condition of the adjoint flux as 
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By using Eq. (4) and the normalization condition of the FSD, ( ) 1S d =∫ P P , W is obtained as 
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3. Adjoint-Weighted Kinetics Parameter Calculation 
 
The developed adjoint estimation method for the MC Wielandt calculations is applied to 
estimate the adjoint-weighted kinetics parameters of infinite homogeneous two-group 
problems and the Godiva criticality problem. 
 
3.1    Infinite Homogeneous Two-Group Problem 
 
The kinetics parameters estimated by the proposed method are compared with the analytic 
solutions for the infinite homogeneous two-group problem. Table I describes two-group 
cross sections for this problem. 

Table I. Two-group cross sections for the infinite homogeneous problems 
 

 First Gr. (g=1) Second Gr. (g=2) 
Σt 0.50 0.50 
Σf 0.025 0.175 
ν 2.0 2.0 

Σsgg 0.10 0.20 
Σsg’g (g’≠g) 0.312987 0.00 

χp,1 0.5375 0.5375 
χp,2 0.4625 0.4625 
χd,1 0.80 0.80 
χd,2 0.20 0.20 

β0 (=νd/ν) 0.006 0.006 
1/v [sec/cm] 2.28626×10-6 1.29329×10-6 



 
The MC Wielandt calculations for the kinetics parameter estimation are performed with 
varying the estimated eigenvalue, ek  and the convergence interval of the adjoint flux, n. The 
MC calculations are performed for 1,000 active cycles with changing the number of histories 
per cycle, Nhist to make the effective number of fission neutrons, L× Nhist constant as about 
4,600,000, where L is the expected number of the fission neutrons for a history defined by 
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Figure I shows the comparison of βeff and Λ calculated by the new method using n of 5 and 
different L’s with the analytic solutions. From the figure, we can see that the MC results 
agree well with the references within 95% confidence intervals, which becomes very small 
when L is greater than 2. Figure II shows the sensitivity of the kinetics parameters to n for 

ek  of 1.4. From the figure, we can observe that the statistical uncertainty becomes larger as n 
bigger. 
 

   

 
Figure I. Comparisons of adjoint-weighted kinetics parameters in the MC Wielandt calculations for 

the infinite homogeneous problems with varying L 
 

    
Figure II. Comparisons of adjoint-weighted kinetics parameters in the MC Wielandt calculations for 

the infinite homogeneous problems with varying the convergence interval of the adjoint flux 
 
3.2    GODIVA Benchmark Problem 
 
The adjoint-weighted kinetics parameters estimated by the new method are compared with 
the experimental data for the Godiva problem [9]. The calculations are performed with 



continuous energy cross section libraries produced from ENDF/B-VII.1. The MC calculations 
are performed for 1,000 active cycles with changing the number of histories per cycle, Nhist 
with the effective number of fission neutrons, L× Nhist of about 4,300,000 
 
Figures III and IV show the comparison of βeff and βeff/Λ calculated by the new method 
changing L with n of 5 and n with ek  of 1.3, respectively, with experimental results. From the 
figures, we can observe that βeff and βeff/Λ from the new method agree well with the 
experimental data within errors of 1% and 3%, respectively, when when L is greater than 2 
and n is less than 20. 
 

    
Figure III. Comparisons of adjoint-weighted kinetics parameters in the MC Wielandt calculations 

for Godiva problem with varying L 
 

    
Figure IV. Comparisons of adjoint-weighted kinetics parameters in the MC Wielandt calculations 

for Godiva problem with varying the convergence interval of the adjoint flux 
 

4. Conclusions 
We have developed an efficient adjoint estimation method for the MC Wielandt calculations, 
which can significantly reduce the memory usage and applied the proposed method for the 
MC kinetics parameter estimations. From the comparisons with analytic solutions for the 
infinite homogeneous two-group problem, it is demonstrated that the new method can predict 
the effective delayed neutron fraction, βeff and the prompt neutron generation time, Λ with 
great accuracy. For Godiva problem, it is demonstrated that βeff and βeff/Λ calculated by the 
new method agree well with the experiments within errors of 1% and 3%, respectively. 

 

5.      References 
[1] G. I. Bell and S. Glasstone, Nuclear Reactor Theory, Van Nostrand Reinhold (1970). 
[2] A. F. Henry, Nuclear-Reactor Analysis, MIT Press (1975). 
[3] K. O. Ott and R. J. Neuhold, Introductory Nuclear Reactor Dynamics, American Nuclear 
Society (1985). 
[4] Y. Nauchi and T. Kameyama, “Development of Calculation Technique for Iterated Fission 
Probability and Reactor Kinetic Parameters Using Continuous-Energy Monte Carlo Method,” J. 
Nucl. Sci. Technol., 47[11], 977 (2010). 
[5] B. C. Kiedrowski, F. B. Brown, P. P. H. Wilson, “Adjoint-Weighted Tallies for k-Eigenvalue 
Calculations with Continuous-Energy Monte Carlo,” Nucl. Sci. Eng., 168, 226 (2011). 
[6] H. J. Shim, Y. Kim, C. H. Kim, “Estimation of Adjoint-Weighted Kinetics Parameters in 
Monte Carlo Forward Calculations,” PHYSOR 2010, Pittsburgh, PA, USA, May 9-14 (2010). 
[7] H. Hurwitz, “Physical Interpretation of the Adjoint Flux:  Iterated Fission Probability,” Naval 
Reactor Physics Handbook, Vol. I, pp. 864-869, A. Radkowsky, Ed., U.S. Atomic Energy 
Commission (1964). 



[8] T. Yamamoto and Y. Miyoshi, “Reliable Method for Fission Source Convergence of Monte 
Carlo Criticality Calculation with Wielandt's Method,” J. Nucl. Sci. Technol., 41[2], 99 (2004). 
[9] J. Blair Briggs (ed.), “International Handbook of Evaluated Criticality Safety Benchmark 
Experiments,” NEA/NSC/DOC(95)03/I, Nuclear Energy Agency, Paris (2004). 
[10] H. J. Shim and C. H. Kim, “Adjoint Sensitivity and Uncertainty Analyses in Monte Carlo 
Forward Calculations,” J. Nucl. Sci. Technol., 48[12], 1453-1461 (2011). 
[11] H. J. Shim and C. H. Kim, “Tally Efficiency Analysis for Monte Carlo Wielandt Method,” 
Ann. Nucl. Eng., 36, 1694-1701 (2009). 
[12] E. M. GELBARD and R. E. PRAEL, “Monte Carlo Work at Argonne National Laboratory,” 
ANL-75-2 (NEACRP-L-118), p. 202, Argonne National Laboratory (1974). 


	Main
	Return

