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Reactor core performance of BR2

® Design goal: thermal neutron flux up to 10" n/cm?s

® Achievement by
Compact core arrangement with central flux trap
Material choice: Be moderator and metallic uranium fuel
High overall core power (upgraded from 50 to T00MW in 1968)

— 25MW additional cooling capacity for experiments

® Achievable flux levels (at mid plane in vessel)
® Thermal flux: 7 103 n/cm?s to 10" n/cm?s
® Fast flux (E>0.1MeV): 1 10'3 n/cm?s to 6 10" n/cm?s

® Allowable heat flux in primary coolant

® 470W/cm? for the driver fuel plates
Demineralised water
Pressure to 1.2MPa, temperature 35-50°C
10m/s flow velocity on fuel plate

® Up to 600W/cm? can be allowed in experiments
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Spectral tailoring in BR2 experiments

® Objective
® Simulation of fast reactor

Conditions 10* 'I MRk B B B UL B B IR | -1-1
® Separation between el
transmutation and lattice
damage TOF
N
® Method £ 100 |
) ) o % *With Cd-screen
® Selection of irradiation S 107 —— without Cd-screen
position in reflector or fuel
108 =
element : =
® Addition of absorbing 10 0% 105 10° 207 10° 20° 104 107 10° 10% 10° 10° 10°
materials Neutron energy [MeV]
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Reactor core geometry

Diverging reactor channels
for compact core and good
access: core Tm, cover 2m &

Angle of channels from 0 to
27°
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fuel element
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Overview of typical irradiation positions

Gamma
heating
(W/g Al)

typical
number
available

diameter
(mm)

thermal flux | fast flux range
Channel type range (10"“n/cm?s)
(10%n/cm?s) (E>1MeV)

110 3.5 0.5to 2.8 171088 25.4 30
up to 2.5 up to 2.5 up to 6.8 32 2*
110 3.5 0.1t0 0.7 0.9 to0 2.3 84 24
¥ hannel
Centra a:lgf channe up to 10 up to 1.8 3 200 e
Peripheral Iarge 3 13 0.1 500 -
channel Hi
Peripheral small
eriphera’ sma 0.7t0 1.5 0.05 t0 0.1 0.4 to 1 50 9

channel P
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Flexible reactor configuration

® Combination of multiple experiments in core load
® Position of fuel, control rods and experiments are optimised
® Choice of type of fuel elements
® Adapted reactor power and cycle length

® Reactor load is optimised for each operating cycle
® 3D MCNP model with burn-up evolution of entire core
® Detailed model of experiment if required
® Verification by measurement before start

® BR2 reactor management is ISO 9001 certified (including
irradiations)
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Typical configuration variants in BR2
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BR2 = Multipurpose Reactor

Thimble
tube

Driver Fuel
Element

Control
Rod

Mid-plane cross section of a typical BR2
core
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Experiment

SiNTD

192|r Basket
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Material irradiation for selection and qualification

® New applications of nuclear energy

® Issue: application target is beyond current database
Higher temperatures
Higher (fast neutron) fluence
Different environments

® Materials: wide variation for screening
Stainless & high chromium steels: GEN 3&4
Ceramics & cermets: ATF claddings & fusion
Copper, tungsten, steel: fusion

® Solutions
Provide rigs with high flexibility in irradiation conditions
Select high fast flux positions: >0.5 dpa / cycle
Provide cost effective solutions for irradiation of many samples
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HTHF — High Temperature High Flux

® Purpose of the device

® Specimens (not fuel) irradiation at
High temperature : 300 = 1000 °C (measured and controlled)
High flux: in a VIn fuel element (dose up to 10 dpa)
Nuclear Heating from 8 up to 14 W/g

® Specimens:
Type: flat tensile, mini-Charpy & simple geometries (like cylinders)
Material: High temperature resistant: W, Mo, SiC, ... Fe (300 °C)

® No requirement to preheat specimens at irradiation temperature
before the first neutron.

® Environment: gas (Helium) or vacuum
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The High Temperature High Flux device

® Material irradiation for GEN 4/fusion conditions

® High dose rate (>0.5 dpa per reactor cycle)
® Stable irradiation temperature during irradiation
® Low cost rig with flexible loading position in reactor

® Solution | o
® Gas filled capsule inside 6 plate fuel element and electrical it RS
heating
® Control of temperature by gas gap design and gas ol Lo
pressure
® Miniature specimens S |

® Characteristics

® Temperature 300-1000°C
® Single use capsule

® Up to 0.75 dpa per reactor cycle of 3 weeks
fluence 4.7 to 5.2E20 n/cm? (E>1MeV) in hottest channel
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HTHF — Design concept

1 - Graphite sheath

2 — Graphite matrix for mini-Charpy
3 — Graphite cover

4 — Graphite pen

5 — Graphite centering plug

6 — Graphite matrix for flat tensile

7 — Graphite cover

Locking Pen

Specimens
Sheath

Matrix

Hole for Dosimeter

Hole for Heating wire

Holes for Thermocouples
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HTHF — Calculation results

Temperature profile +/- flat
over predefined range.

(+/- 1% at calculated
pressure)

Measurements of
temperature at max 4 levels.
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Irradiation behavior

® Strong temperature dependence on nuclear heating
® Optimisation of temperature feedback on temperature control
® Strong gradient between W samples and C matrix

1500 Date: 2017-07-25 Time: 08:30:00 Value: 67.53

1200

(°C)

HTHF - T 66-1_PV

300

Electric power

Reactor power

N\
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Optimised control: irradiation cycle 2
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Irradiation conditions

® Fast flux at mid plane during first 2 cycles
® 1,7 10"n/cm?®s and 1,4 10"n/cm?s
® Accumulated damage after 2 cycles
® 0,42dpain W HTHF Cycle 05/2017

® Neutron spectrum
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1,2E+14
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8E+13
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0
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Material irradiation in support of long term operation

® [rradiation induced ageing of reactor pressure vessel steels
® Issue: current files from surveillance programmes insufficient for LTO

Insufficient material
Low lead factor

® Challenge
Provide validated datasets compatible with existing surveillance
programmes
— Relevant dose levels for Long Term Operation
— Sufficient volume/ numerous specimens
— Representative and controlled temperature

® Solution
Provide a rig with stable temperature control in low to moderate flux
position (0.X dpa in one or 2 reactor cycles)
Validate data on standardised specimen type against surveillance data
from plant
Generate new data beyond database on newly irradiated samples
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The new RECALL device

® Requirement: material irradiation in typical LWR conditions
® Loading of full size Charpy specimens (>10)

® Stable irradiation temperature before, during & after irradiation
(250-320°C)

® Flux levels relevant for LWR plant life management: 0.05 to 0.15 dpa
per reactor cycle of 3 weeks

® Solution

® Reusable rig with flexible loading position in reactor
Short lead times
Limited impact on other experiments
Variable position in reactor yields wider range of dose rates

® >16 Charpy specimens in flux range >85% maximum
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neutron fluence (10° n/cm?, E>1MeV)

RECALL rig concept

T T T T T T T 1

-400 -300 -200 -100 0 100 200 300 400
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RECALL operation

® Pressurised water is injected at low temperature in IPS

® Evacuation of nuclear heating by nucleate boiling

® |njection of cold water

® Saturation pressure set to stabilize irradiation temperature

}_@
&l
o
5
’7
2

I

-

® Stable irradiation temperature independent of heat flux

® Control of steam fraction and reactivity effect (void fac
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Temperature distribution

Sample center line temperature profile
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Steam fraction as function of cold water injection
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Expected fast flux distribution in needles & structure
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Conclusions

® 2 new devices are presented for material irradiation
® High fast flux device for multi-cycle dpa accumulation: HTHF

® Low fast flux device for ageing studies with strict temperature
control: RECALL

® Utilisation of flexibility of reactor
® Selection of fuel element with similar heating over cycles: HTHF

® Creation of reflector position with desired fluence over 2 cycles and
rotation at mid experiment: RECALL

® Cost effectiveness and short lead times
® Generic design method and re-use of OPE: HTHF
® Reloadable device in reactor pool or hot-cell: RECALL
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