Development of Ir-192 Spherical Sources for

Non-Destructive Testing and Future Applications

Takashi Ishii, Norikazu Ooka, Yukimasa Kawauchi, Takashi Saito Hiroshi Yoshimochi, Hiroshi Kawamura Chiyoda Technol Corporation, Japan

Introduction

- Currently, the most commonly used gamma-ray source for radiographic testing in Japan is Ir-192 (radioactivity: 10 Ci).
- The predominant form consists of stacked disc sources in a cylindrical shape, which differs from an ideal point source.
- Therefore, the fabrication of a miniaturized sphere Ir-192 source that has no directional anisotropy in all directions and reduces geometric unsharpness has been attempted.
- This paper presents the results of irradiation conducted using JRR-3 operated by JAEA and describes the imaging tests of sphere sources performed previously.

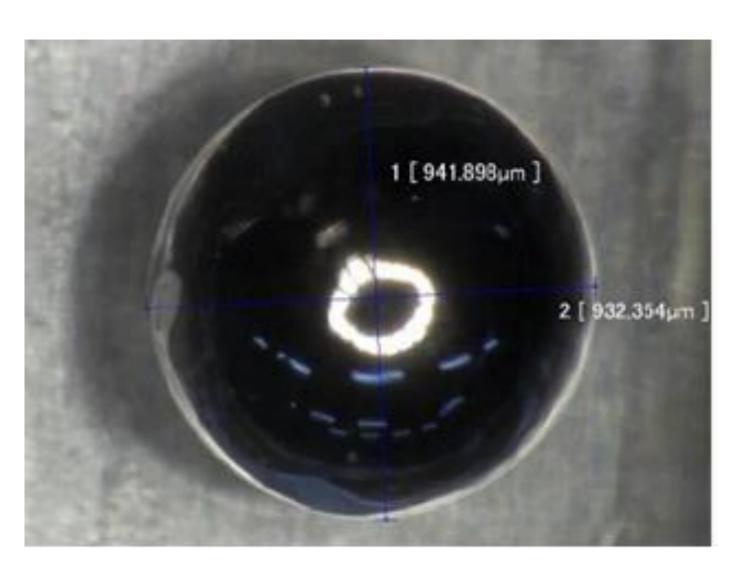


Fig.1 Miniaturized sphere Ir-192 source by melt dropping method

Method (Irradiation using JRR-3)

- Four types of miniaturized sphere samples ranging from 0.5 mm to 1.5 mm in diameter were selected.
- Figure 2 shows the structural overview of the target holder and irradiation capsule.
- The irradiation was carried out for 1 cycle (25days) at VT-1 hole (nominal thermal neutron flux of 3×10^{14} cm⁻²s⁻¹) in the fuel region of the JRR-3 core.

(3)(12)(11)(14)(10)(9)(8)(7)

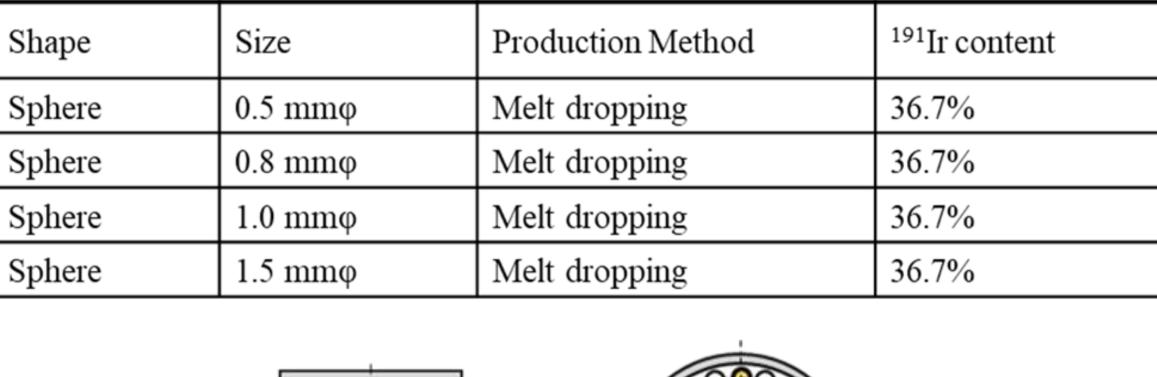
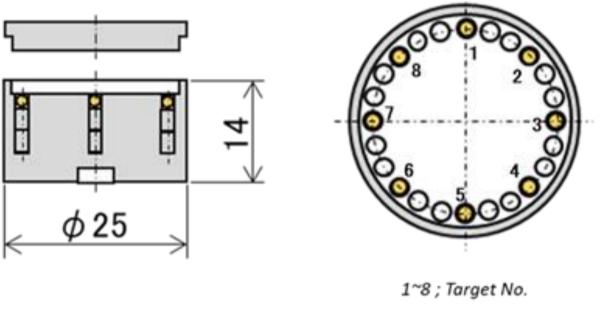



Table 1 Shape and size of the irradiation target

Target Holder Assembly

(2) φ1.5X3mm (15) (15) (16) (16) (15) (16) Aluminum Spacer : 2+6 sφ0.5:2pcs,sφ0.8:6pcs 145 Holder 4 A1050 sφ1.0 A1050 Holder 3 sφ1.5 Target 2 φ2.0x2.0mm cross-section cross-section

Fig.2 Outline of Irradiation Capsule and Target Holder

Result (Irradiation)

- Visual inspection confirmed that no harmful scratches had occurred on the irradiated sphere Ir-192 samples.
- The dose measurement results for each miniaturized sphere are shown in Tables 2 through 5.
- Since there is almost no variation in the specific radioactivity values for each group, it is estimated that thermal neutrons at the JRR-3 VT-1 were irradiated uniformly from almost all directions.

Table 2 Radioactivity of the sphere 1.5mmφ					
Number	Diameter (mm)	Weight (mg)	Radioactivity (Ci)	Specific Radioactivity (Ci/mg)	
1	1.49	39.25	9.78	0.25	
2	1.50	39.24	9.74	0.25	
3	1.49	39.25	9.78	0.25	
4	1.49	39.13	9.78	0.25	
5	1.48	39.00	9.74	0.25	
6	1.49	39.46	9.44	0.24	
7	1.49	39.09	9.70	0.25	
8	1.50	39.12	9.74	0.25	

39.19

1.49

Number	Diameter (mm)	Weight (mg)	Radioactivity (Ci)	Specific Radioactivity (Ci/mg)
1	0.98	11.59	3.89	0.34
2	1.00	11.72	3.93	0.34
3	0.99	11.55	3.85	0.33
4	0.99	12.02	4.00	0.33
5	1.01	11.95	3.96	0.33
6	0.99	11.48	3.85	0.34
7	1.00	11.73	3.93	0.34
8	1.00	12.12	4.00	0.33
Ave.	0.99	11.77	3.93	0.33

Number	Diameter (mm)	Weight (mg)	Radioactivity (Ci)	Specific Radioactivity (Ci/mg)
1	0.78	5.58	2.14	0.38
2	0.79	5.97	2.19	0.37
3	0.83	6.51	2.42	0.37
4	0.78	5.72	2.10	0.37
5	0.81	6.40	2.32	0.36
6	0.79	5.98	2.18	0.36
Ave.	0.80	6.03	2.23	0.37
	Table 5 Ra	dioactivity of	the sphere 0.5	mmφ
Number	Diameter (mm)	Weight (mg)	Radioactivity (Ci)	Specific Radioactivity (Ci/mg)
1	0.51	1.70	0.69	0.41
2	0.50	1.60	N/A*2	N/A

Discussion (Radiography Test)

• A comparison of radiographic testing using sphere sources and disc sources is described.

9.71

0.25

- The radiographic conditions for this test are shown in Table 6, and the radiographic arrangement is shown in Figure 4.
- Table 7 shows the wire diameters of the Image Quality Indicator (hereinafter referred to as "I.Q.I") that could be identified by direct observation of the films. Visual observation showed that the W-1 I.Q.I had one more identifiable wire than the A-2 I.Q.I.

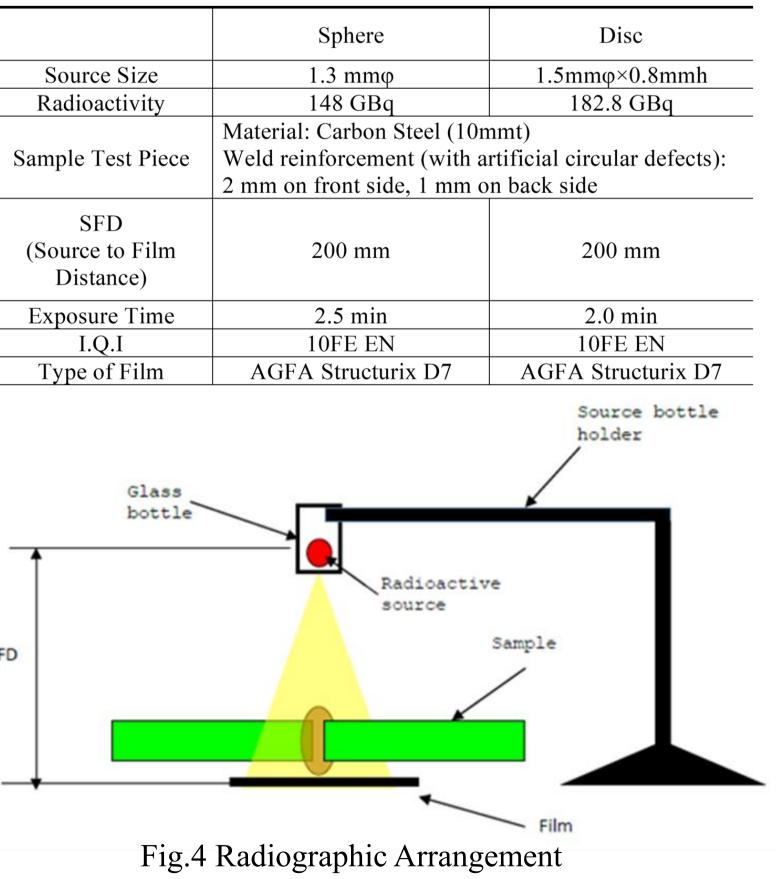


Table 6 Radiographic Conditions

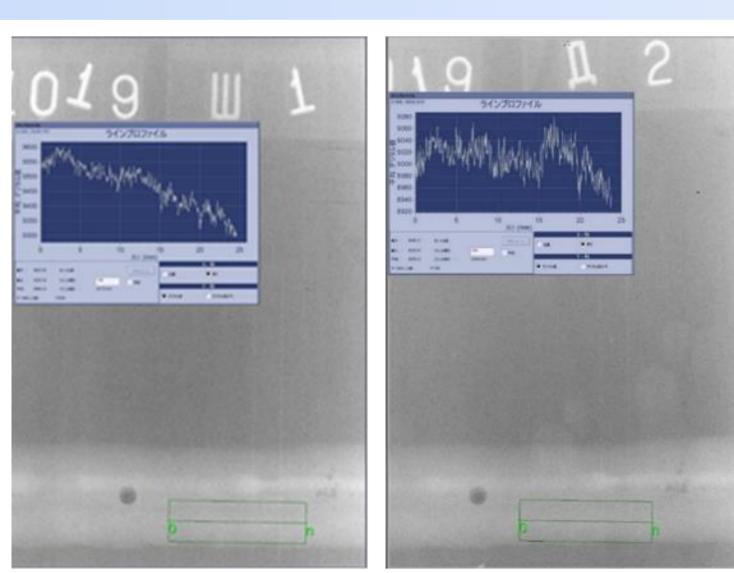


Fig.5 Film digitizing image (W-1: Sphere, A-2: Disc)

Table 7 Results of perceptible wire diameter for I.Q.I					
	Film W-1	Film A-2			
	(ϕ 1.3mm sphere)	(ϕ 1.5mm Disc)			
	Number of wires	Number of wires			
	(Wire diameter)	(Wire diameter)			
Observation of	3 (0.25)	2 (0.32)			
Film Images	3 (0.23)				
Observation of	3 (0.25)	2 (0.32)			
Digital Images	3 (0.23)	2 (0.32)			

Digital Images

Conclusion

- Using JRR-3, the first-ever irradiation of sphere Ir-192 was conducted in Japan. It was confirmed that neutron irradiation in the VT-1 of JRR-3 was performed uniformly.
- Preliminary tests showed that the developed miniaturized sphere sources produce images with less geometric unsharpness (penumbra) compared to conventional disc sources. The utility of sphere sources has been demonstrated.
- The sphere sources irradiated in this study are scheduled to undergo F-RT and D-RT imaging tests for further discussion.