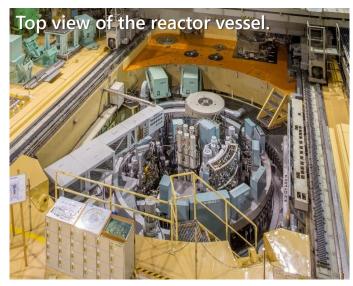


Safety Improvement and Regulatory Review on Experimental Fast Reactor *Joyo* under the New Regulatory Requirements in Japan

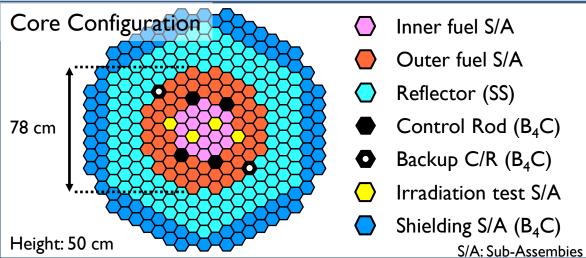
*Masaki OKAGAKI, Yoji GONDAI, Masaya YAMAMOTO, Misao TAKAMATSU, Shigetaka MAEDA

Experimental Fast Reactor Joyo, Japan Atomic Energy Agency

IGORR 22nd 2025/6/16



- Introduction
- Background
- Outline of Compliance with Regulation
- Safety Improvement & Regulatory Review
- Summary
- Operation Plan & Application


Introduction

Experimental Fast Reactor Joyo

Purpose of use

- R&D for fast breeder reactors
- Fuels & materials irradiation
- Fundamental research
- R&D for radioisotopes production

Thermal Power	100 MW
Fuel	U-Pu mixed oxide pellet Pu: < 32 wt%; ²³⁵ U: 18 wt% enriched
Coolant	Liquid Sodium
Electricity Generator	Not installed

Introduction

History

1970

Installation permitted

1977

Initial criticality, Apr. 24th

2011

The Great East Japan Earthquake

2012

The Nuclear Regulation Authority was established

2013

Enforcement of the new regulatory requirements

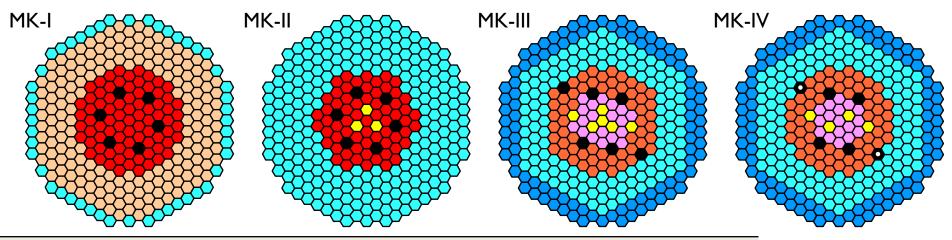
2017

Applied changes in reactor installation

2023

Changes in reactor installation permitted

Breeder core			
MK-I	MK-II	MK-III	MK-VI
1977-1981	1982-2000	2003-2007	Target to restart in 2026
6-cycle operated	35-cycle operated	6-cycle operated	
Verification of nuclear fuel breeding Plant examinations for the sodium cooling system	Irradiation tests of fuels & materials for fast reactors Obtaining experience in the operation & maintenance of the fast reactor	Irradiation tests with enhanced irradiation ability	Irradiation tests with the modified core for the new regulatory requirements R&D on Radioisotopes production



Introduction

History

Operation Time 70,798 h

Heat Generation 6,244 GWh

Items	MK-I	MK-II	MK-III	MK-IV	
Reactor thermal power [MWt]	50 → 75	100	140	100	
Max. number of driver fuel	82	67	85	79	
Blanket	Depleted UO ₂	N/U	N/U	N/U	
²³⁵ U enrichment [wt%]	< 23	18	18	18	
Pu content [wt%] (Inner / Outer)					
Total	< 18	28	23 / 29	22 / 29	
Fissile	< 14	20	16 / 21	16 / 21	
Max. liner heat rate [W/cm]	320	400	420	330	
Max. neutron flux [n/(cm ² ·s)]					
Total	3.2×10^{15}	4.9×10^{15}	5.7×10^{15}	4.2×10^{15}	
Fast (> 0.1 MeV)	2.2 ×10 ¹⁵	3.2 ×10 ¹⁵	4.0 ×10 ¹⁵	2.9 ×10 ¹⁵	
Max. pin average burn-up [GWd/t]	42	75	90	90	

- Driver Fuel S/A
- Blanket fuel S/A
- Inner fuel S/A
- Outer fuel S/A
- Reflector
- Control Rod
- Backup C/R
- Irradiation test S/A
- Shielding S/A

N/U: Not Used

Background

The New Regulatory Requirements in Japan

The Nuclear Regulation Authority of Japan has enforced new regulatory requirements in response to lessons learned from the Fukushima-Daiichi NPP accident.

Numerous requirements have been newly introduced and reinforced not only for commercial nuclear power reactors but also for research reactors.

Previous Regulatory Requirements

Consideration of natural phenomena (earthquakes and tsunamis)

Fire protection

Reliability of power supply

Function of other SSCs*

Seismic & tsunami resistance

Accident

Response to intentional aircraft crashes

Suppression of radioactive materials dispersion

Prevention of containment vessel failure

Prevention of core damage

Consideration of internal flooding

Consideration of natural phenomena (earthquakes, tsunamis, volcanic eruptions, tornadoes and forest fires)

Fire protection

Reliability of power supply

Function of other SSCs

Seismic & tsunami resistance

Regulatory requirements applied to Joyo are between those for research reactors and power reactors, due to its relatively high power.

Beyond Design Basis Accident Only for over 500 kWt

Consideration of internal flooding

Consideration of natural phenomena (earthquakes, tsunamis, volcanic eruptions, tornadoes and forest fires)

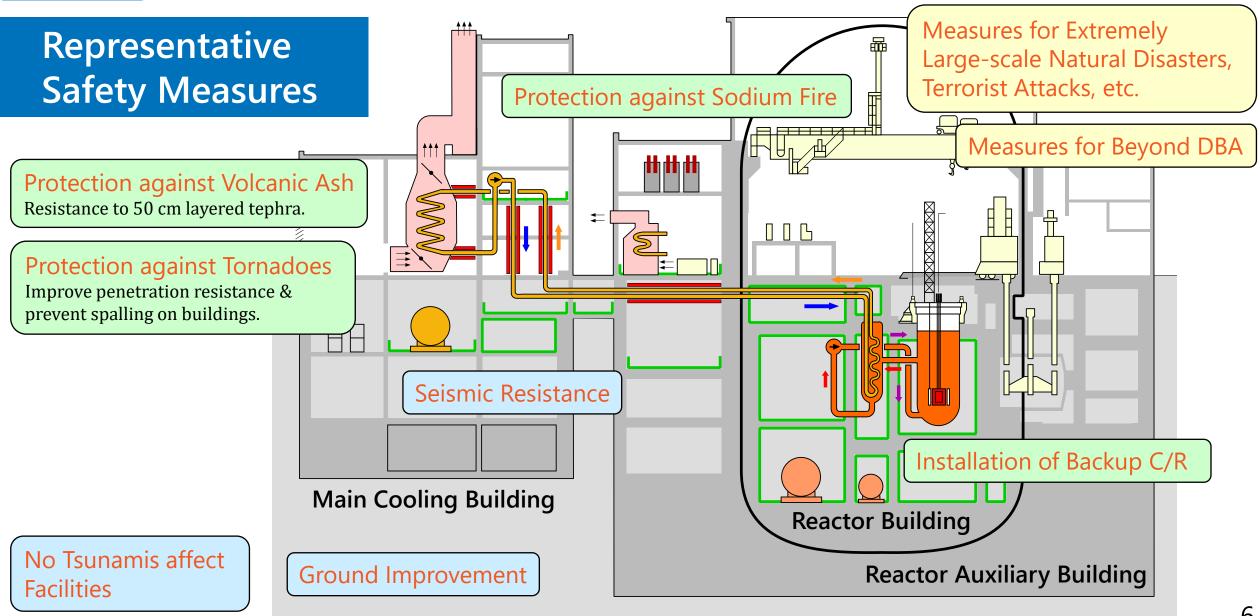
Fire protection

Reliability of power supply

Function of other SSCs

Seismic & tsunami resistance

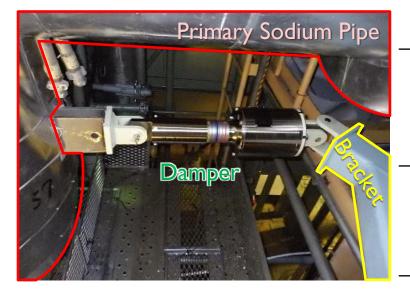
Commercial Nuclear Power Reactors


Research Reactors

New Regulatory Requirements

^{*} SSC: Structure, Systems and Components

Outline of Compliance with Regulation



Seismic & Tsunami Resistance

Seismic Resistance

Max. acceleration of basic seismic motion for design: 0.36 G (350 gal) -> 0.99 G (973 gal)

Some auxiliary facilities, pipes and others are anti-seismic reinforced.

Dampers on

Primary sodium pipes

Upgraded Approx. 230

Additional + Approx. 50

Secondary sodium pipes

Upgraded Approx. 130

Additional + Approx. 20

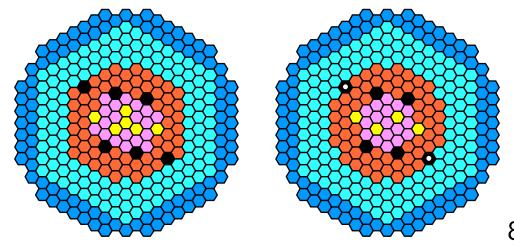
Anti-seismic Reinforcement on the Main Stack

Tsunami resistance

The altitude of the site: over 35 m Estimated reachable Tsunami to the site: 17.8 m

No Tsunami effects.

Installing Backup Shutdown System

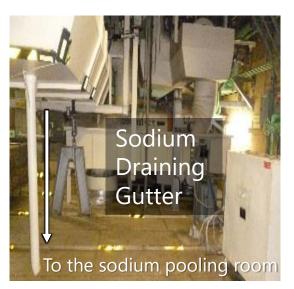

The reactor shutdown system has been multiplexed by reclassifying two outer control rods as backup control rods and installing an independent logic circuit.

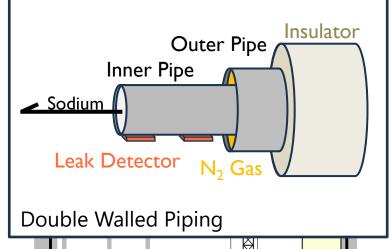
With this change, the limit of excess reactivity decreased to maintain a safety margin with reactor shutdown conditions. The number of fuel S/A and the thermal power have changed to satisfy the new limit of excess reactivity.

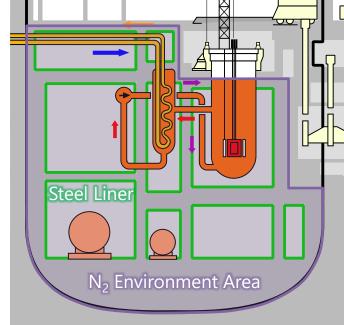
<u>C/R</u>	Backup C/R	
11	1111	
	Cor	re
MK	–III core	MK-IV core

	MK-III core	MK-IV core
Thermal Power	140 MW	100 MW
Num of Fuel S/A	Max. 85	Max. 79
Control Rods	6 rods	4 rods
Backup Control Rods	Not Installed	2 rods
Max. Excess Reactivity	0.045 Δk/k	0.035 Δk/k

- Inner fuel S/A
- Outer fuel S/A
- Reflector
- Control Rod
- Backup C/R Rod
- Irradiation test S/A
- Shielding S/A


Protection against Sodium Fire


- Reinforced measures
- Existing measures


The Protection with reinforced measures & existing measures

- Anti-seismic reinforcement of sodium loops
- Emergency sodium dump to dump tanks
- Double walled piping for primary sodium loops
- Replacement of the atmosphere with an inert gas under the operating floor
- Steel liner to prevent sodium-concrete reaction
- Sodium draining gutter for secondary sodium loops
- ► Additional installation of sodium fire extinguishers

Beyond Design Basis Accidents

NRA required JAEA to take characteristic safety measures for B-DBA & event in excess of B-DBA including a response to intentional aircraft crashes.

JAEA applied the PRA method for consideration, utilizing knowledge from previously conducted research.

Experimental Fast Reactor Joyo

AOO		
DBA		
B-DBA	Measures to prevent core damage	
	Measures to prevent containment vessel failure	
Event in excess of B-DBA	Measures to mitigate the large amount of radioactive material release	

Assessment flow of B-DBA

Identification of accident sequences

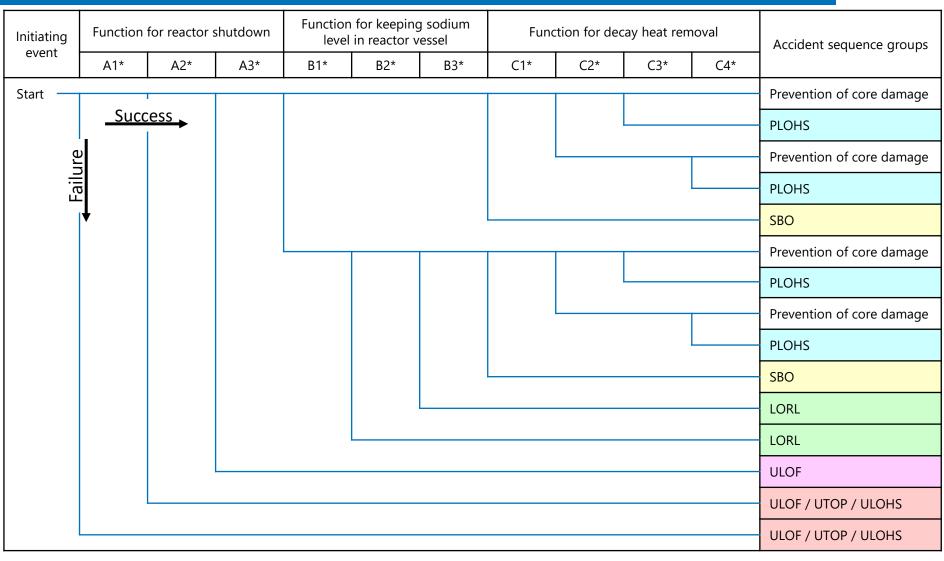
Planning measures to prevent core damage

Effectiveness evaluation of measures to prevent core damage

Assume that the functions of all measures are lost.

Planning measures to prevent containment vessel failure

Effectiveness evaluation of measures to prevent containment vessel failure



The Method to Identify Accident Sequence Groups on B-DBA

* Details in the appendix

Master Logic Diagram Method

The accident sequence groups encompassed all possible accident cases on Joyo by using the PRA method.

11

The Identified Accident Sequence Groups on B-DBA

ULOF Unprotected Loss of Flow

Loss of flow on primary sodium loops + Failure of control rods insertion

3 sequences

UTOP Unprotected Transient Over Power

Anticipated transient
+ Failure of control rods insertion

2 sequences

LORL Loss of Reactor Level

The core exposed caused by sodium external leak

3 sequences

SBO Station Blackout

Loss of normal & emergency power supply

1 sequence

This is the first experience on the review that uses the PRA methods to identify the accident sequences for fast reactors.

ULOHS Unprotected Loss of Heat Sink

Loss of heat sink function on secondary sodium loops

+ Failure of control rods insertion

3 sequences

ATWSs

(Anticipated Transient Without Scram)

PLOHS Protected Loss of Heat Sink

Loss of heat sink function on multiple systems

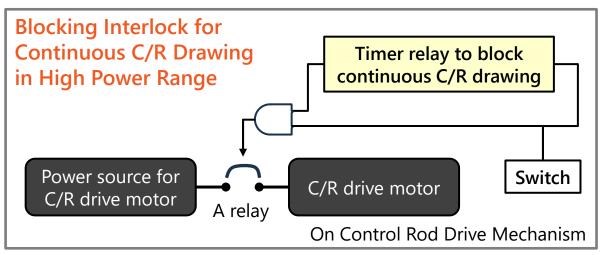
2 sequences

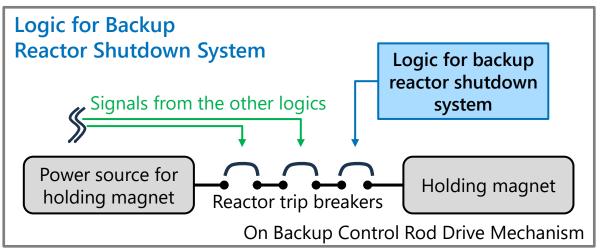
LF Local Faults

Failure of a fuel sub-assembly caused by local flow blockage

1 sequence

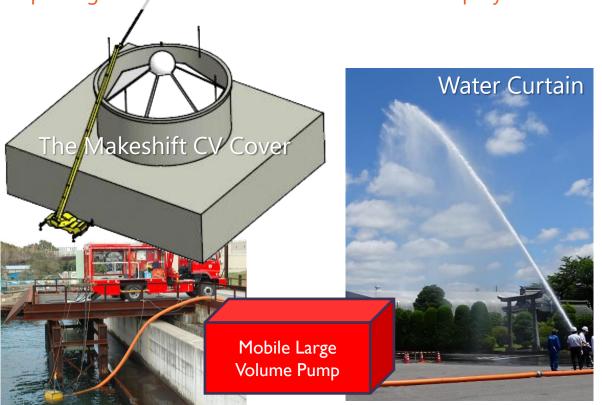
LOHRSs


(Loss of Heat Removal System)


Local Faults

Installed Equipment for the Measures on B-DBA (A case of UTOP)

In measures to prevent core damage Anticipated transient with continuous C/R drawing + Failure of the reactor trip signal (High neutron flux in power range) Success Block continuous C/R drawing The alternate reactor trip signal Backup C/R insertion by signal over 3 sec by the interlock (High coolant temp. at reactor vessel outlet) from logic for backup reactor shutdown system Determination of the failure of Operator manual shutdown process Reactor shutdown (Manual scram, etc.) the automatic reactor shutdown (Assume that the functions of all measures are lost.)
Measures to prevent containment vessel failure



Event in excess of B-DBA

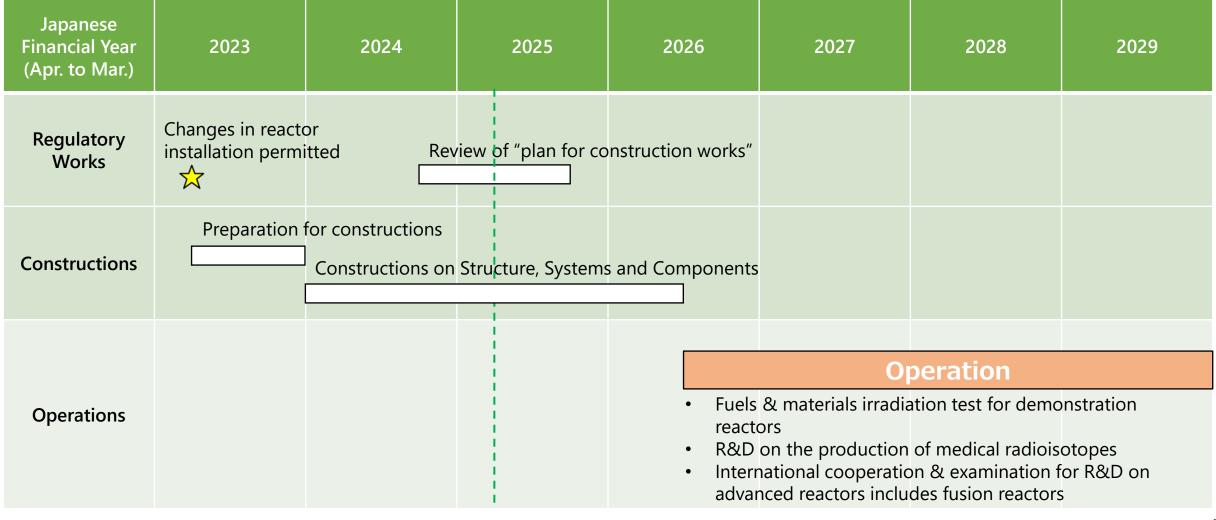
Measures to mitigate the large amount of radioactive material release

Suppressing radioactive materials with the makeshift CV cover Capturing radioactive materials with downwind sprayed water

Assume extremely large-scale natural disasters, terrorist attacks or others occurred.

Preparation of multiple types of fire extinguishing methods

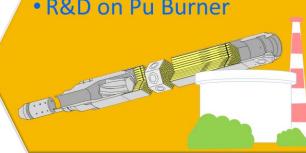
Choose the effective methods to extinguish the fire

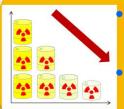

Summary

- JAEA forwards the restart of Experimental Fast Reactor Joyo under the new regulatory requirements.
- Regulatory requirements applied to Joyo are between those for research reactors and power reactors, due to its relatively high power.
- Seismic resistance, protection against sodium fire, B-DBA, etc., were the focus of the regulatory review.
- NRA required JAEA to take characteristic safety measures for B-DBA & event in excess of B-DBA including a response to intentional aircraft crashes.
- JAEA applied the PRA method for consideration on B-DBA, utilizing knowledge from previously conducted research.
- All of the measures were reviewed by NRA, and JAEA obtained permission (the license) for Joyo.

Operation Plan & Application

Schedule




Operation Plan & Application

For Multidiscipline

Pu Management with Non-Proliferation

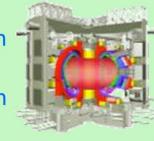
• R&D on Pu Burner

- MA Burning & Recycling
- Toxicity Reduction of

Sustainability of **Nuclear Energy**

Green Transformation

Development of


Demo - Fast Reactor

Other

Gen-IV Reactors

- Basic Research
- Material Irradiation

Versatile Usage

Radioisotopes Production

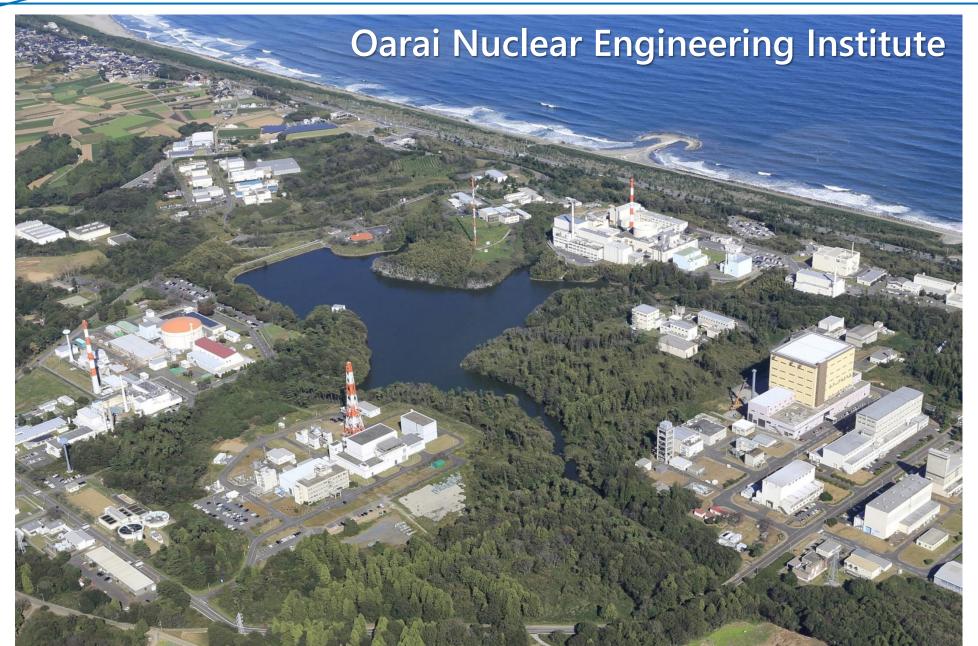
Medical & Industrial **Applications**

Targeted Alpha Therapy for Cancer **Patients**

Cooperation with Univ. & Inst.

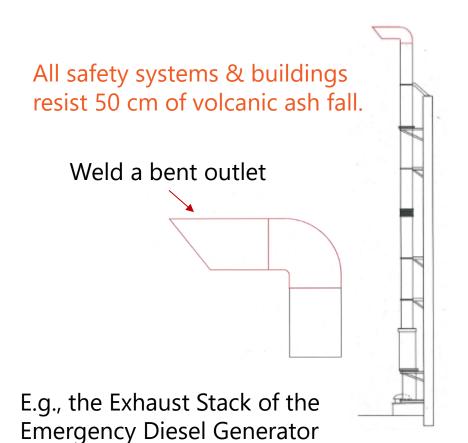
Ac-225

œ-ray


 Acceptance of Researchers & **Engineers for Training**

Human Resource Development

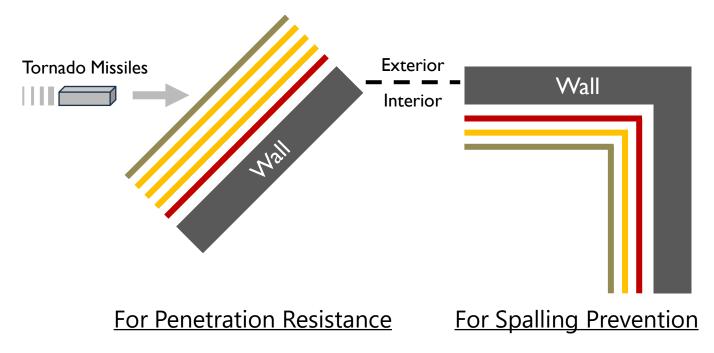
Thank you for your attention


Appendix

Protection against Volcanic Ash & Tornadoes

Incombustible coatAramid fiber sheetBasecoat

Volcanic Ash


Estimated max. volcanic ash fall: 50 cm

Tornadoes

Estimated max. Tornadoes wind speed: 100 m/s

To prevent damage to the interior safety systems from tornado missiles, install aramid fiber sheets on building walls.

Appendix

A1:	Actuation of a primary scram signal
A2:	Scram by reactor protection systems
A3:	Insertion of primary control rods
B1:	Prevention of inner pipe failure in the primary loops of the main cooling system
B2:	(after B1 fails) Prevention of outer pipe failure in the compartment containing the failed inner pipe
B3:	(after B1 fails) Prevention of inner pipe failure in the primary loop of the main cooling system in a different compartment from that containing the failed inner pipe
C1:	Supply of an emergency electric power
C2:	Forced circulation by the primary pumps using pony motors
C3:	Decay heat removal by the secondary loops of main cooling system
C4:	Forced circulation by the auxiliary cooling system