

JHR Non Destructive Examination benches: current status and prospects

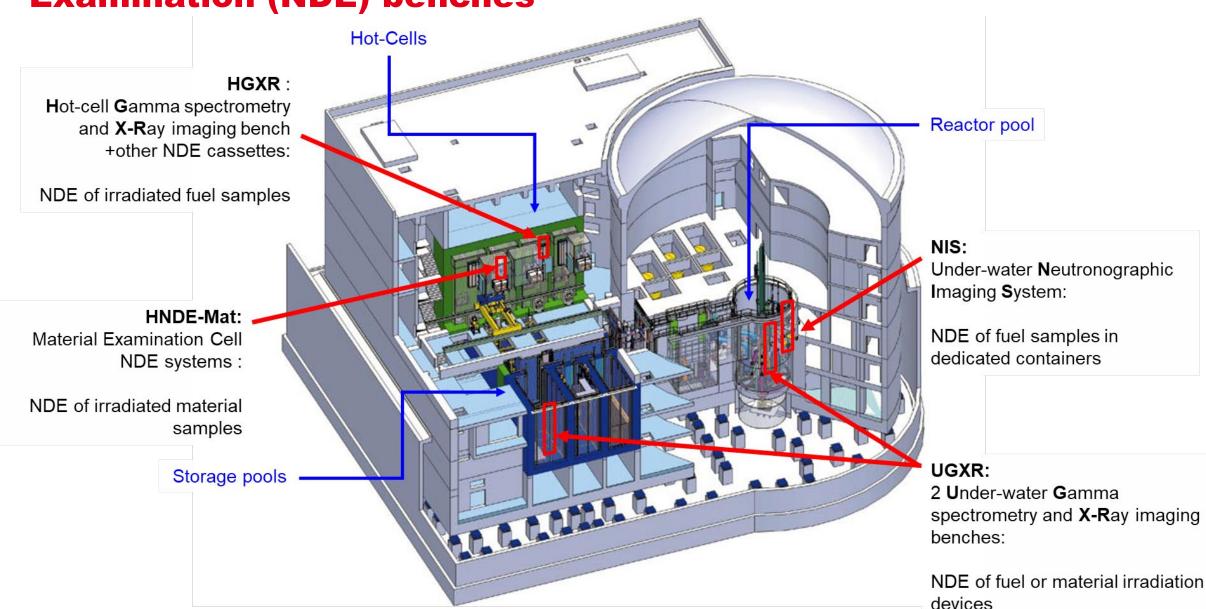
A.Gallais-During^{1,2}, S. Bernard¹, B. Cornu¹, C. Roure¹, C. Neyroud¹, A. Douveneau², P. Kinnunen³

¹CEA, DES, IRESNE, F-13108 Saint-Paul-lez-Durance, France ²CEA, PRJH, DEXP, BV2 – Chantier RJH – BP9, 13115 Saint-Paul-lez-Durance, France ³VTT, Kemistintie 3, P.O. Box 1000, 02044 Espoo, Finland

JHR Non Destructive Examination benches: current status and prospects

CONTENTS

- 1. Jules Horowitz Reactor (JHR) and its Non-Destructive Examination (NDE) benches
- 2. Design and operating of the Under-water Gamma & X Rays (UGXR) bench
- Design and operating of the Hot-cell Gamma & X Rays (HGXR) bench
- 4. « Cold » conditions for representative testing UGXR and HGXR benches
- 5. Examples of complementary examinations combining gamma spectrometry and X-ray imaging
- 6. Conclusion



- 1. Jules Horowitz Reactor (JHR) and its Non-Destructive Examination (NDE) benches
- 2. Design and operating of the Under-water Gamma & X Rays (UGXR) bench
- 3. Design and operating of the Hot-cell Gamma & X Rays (HGXR) bench
- 4. « Cold » conditions for representative testing UGXR and HGXR benches
- 5. Examples of complementary examinations combining gamma spectrometry and X-ray imaging
- 6. Conclusion

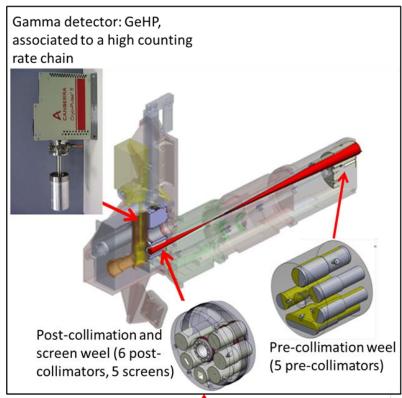
1. Jules Horowitz Reactor (JHR) and its Non-Destructive Examination (NDE) benches

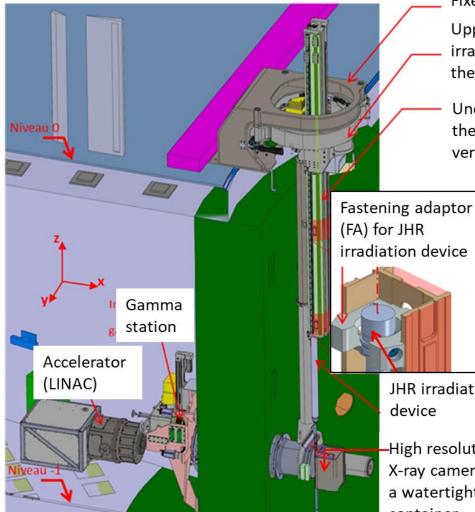
1. Jules Horowitz Reactor (JHR) and its Non-Destructive Examination (NDE) benches

Expected performances

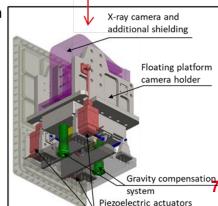
	UGXR – under-water	HGXR – in hot cell
Acceptable objects / maximum size	- JHR irradiation devices - Max dimensions : Ø200 mm, height 6500 mm - Max weight : 500 kg	 Fuel samples: Fuel rods, plates, JHR fuel assembly Max dimensions: Ø160 mm, height 1150 mm Max weight: 30 kg
gamma scanning 1D/2D	 Relative and quantitative axial and transversal Fission Products distribution, Power and Burn-Up evaluation Burn-Up: +/- 6 % (2 σ) on ¹³⁷Cs < 72 h examination for a 600 mm fuel column (standard axial scan) 	 Relative and quantitative axial and transversal Fission Products distribution, Power and Burn-Up evaluation Burn-Up: +/- 4 % (2 σ) on ¹³⁷Cs < 12 h examination for a 600 mm fuel column (standard axial scan)
X-ray camera	- X-ray detection* : 6.6 lp/mm	- X-ray detection* : 8 lp/mm
X-ray radiography / tomography	- High resolution : target 100 µm - About 30/40 minutes for 10 cm radiogram/ HR tomogram	 High resolution : target 70 μm About 30/80 minutes for 10 cm radiogram/ HR tomogram
(x,y) movement	Typical elementary step = 100 μ m \pm 20 μ m; repeatability \pm 50 μ m	
Z movement	Typical elementary step = 100 μ m \pm 50 μ m; repeatability \pm 50 μ m	
Rotation movement	Typical elementary step = $0.1^{\circ} \pm 0.03^{\circ}$; repeatability $\pm 0.03^{\circ}$	

JHR Non Destructive Examination benches: current status and prospects


CONTENTS


- 1. Jules Horowitz Reactor (JHR) and its Non-Destructive Examination (NDE) benches
- 2. Design and operating of the Under-water Gamma & X Rays (UGXR) bench
- 3. Design and operating of the Hot-cell Gamma & X Rays (HGXR) bench
- 4. « Cold » conditions for representative testing UGXR and HGXR benches
- 5. Examples of complementary examinations combining gamma spectrometry and X-ray imaging
- 6. Conclusion

2. Design and operating of the under-water UGXR bench **Ground side**


Fixed frame

Upper mobile part moving the irradiation device in rotation in the horizontal plane

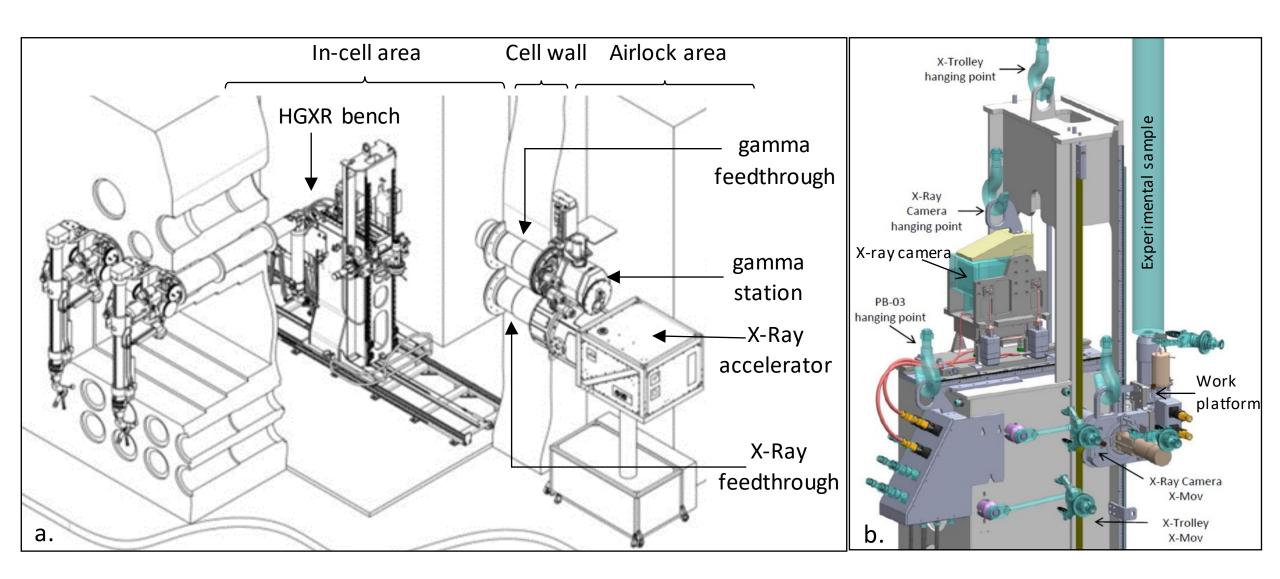
Under-water arm moving the irradiation device vertically

Under-water side JHR irradiation

 High resolution X-ray camera in a watertight container

Collimation feedthrough

JHR Non Destructive Examination benches: current status and prospects


CONTENTS

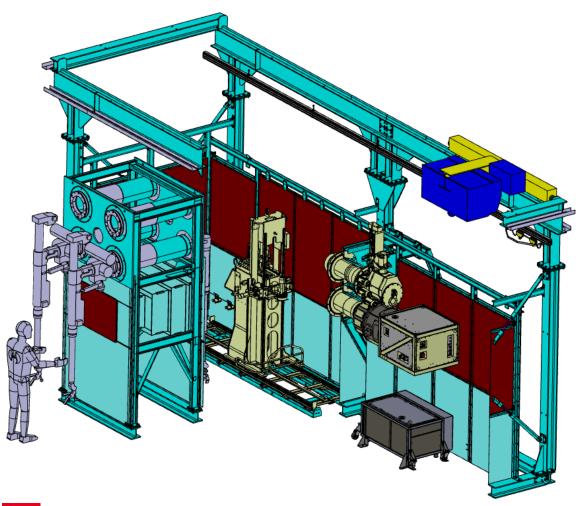
- 1. Jules Horowitz Reactor (JHR) and its Non-Destructive Examination (NDE) benches
- 2. Design and operating of the Under-water Gamma & X Rays (UGXR) bench
- Design and operating of the Hot-cell Gamma & X Rays (HGXR) bench
- 4. « Cold » conditions for representative testing UGXR and HGXR benches
- 5. Examples of complementary examinations combining gamma spectrometry and X-ray imaging
- 6. Conclusion

3. Design and operating of the hot-cell HGXR bench

- 1. Jules Horowitz Reactor (JHR) and its Non-Destructive Examination (NDE) benches
- 2. Design and operating of the Under-water Gamma & X Rays (UGXR) bench
- Design and operating of the Hot-cell Gamma & X Rays (HGXR) bench
- 4. « Cold » conditions for representative testing UGXR and HGXR benches
- 5. Examples of complementary examinations combining gamma spectrometry and X-ray imaging
- 6. Conclusion

5. « Cold » conditions for representative testing UGXR benches

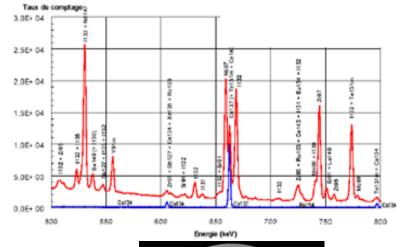
CESARINE pool and test tower in TOTEM facility

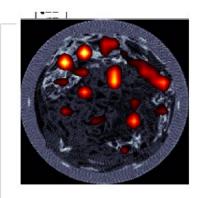


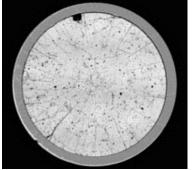
5. « Cold » conditions for representative testing HGXR bench

MARCEL Mock-up cell in TOTEM facility

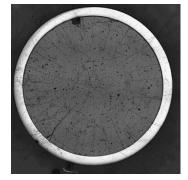
Remote handling tests in MARCEL Mock-up cell in TOTEM facility


- 1. Jules Horowitz Reactor (JHR) and its Non-Destructive Examination (NDE) benches
- 2. Design and operating of the Under-water Gamma & X Rays (UGXR) bench
- Design and operating of the Hot-cell Gamma & X Rays (HGXR) bench
- 4. « Cold » conditions for representative testing UGXR and HGXR benches
- 5. Examples of complementary examinations combining gamma spectrometry and X-ray imaging
- 6. Conclusion




6. Examples of complementary examinations combining gamma spectrometry and high resolution X-ray imaging

Example of gamma spectrum and emission tomography



Comparison of a realistic simulation of an non destructive examination by X-Ray tomography (left) and a destructive examination (right)

Realistic simulation of X-ray tomography (source 0.5 mm – detection 50 µm)

Macrography after cutting and metallic coating of a fuel sample

- 1. Jules Horowitz Reactor (JHR) and its Non-Destructive Examination (NDE) benches
- 2. Design and operating of the Under-water Gamma & X Rays (UGXR) bench
- Design and operating of the Hot-cell Gamma & X Rays (HGXR) bench
- 4. « Cold » conditions for representative testing UGXR and HGXR benches
- 5. Examples of complementary examinations combining gamma spectrometry and X-ray imaging
- 6. Conclusion

3. Conclusion

17

UGXR, HGXR benches :

- experimental equipment dedicated to gamma spectrometry and high resolution, high energy X-ray imaging of fuel devices and samples irradiated in JHR.
- will be implemented in the JHR's pools for UGXR and in the fuel examination hot cell for HGXR bench.
- designed to reach high-resolution performances in an acceptable acquisition time and to accommodate a wide range of irradiation devices and of experimental fuel samples.

UGXR and HGXR equipment fully manufactured :

- operations involved in experimental measurement sequence and in maintenance will be carried out in "cold conditions", in a pool and in a mock-up cell representative of the JHR environment.
- Demonstration of operability of these benches is of crucial importance for JHR experimental capability:
 - on-site non-destructive examination benches are a major asset of JHR for studying and better understanding the behavior of fuels under irradiation.

Thank you for your attention

