The 22nd IGORR (International Group on Research Reactor) Conference Mito, Ibaraki, Japan, 15-19 June 2025

Development of Fundamental Technologies for Domestic Production of Medical Radioisotope (Technetium-99m)

H. IDE¹, A. KIMURA¹, K. NISHIKATA¹, Y. FUJITA¹, K. HANAWA¹, M. SEKI¹, M. ARAI¹, A. OTA², M. KAWABATA², T. NIIZEKI³, S. KAKEI⁴, N. FUKUMITSU⁵, H. KUMADA⁶, K. HATANO⁶, M. MATSUKURA⁷, Y. KOGUCHI², K. TSUCHIYA¹ and M. KAMINAGA¹

1: Japan Atomic Energy Agency, 2: Chiyoda Technol Corporation,

3: ART KAGAKU Co., 4: Taiyo Koko Co., 5: Kobe Proton Center, 6: University of Tsukuba, 7: The University of Tokyo

Contents

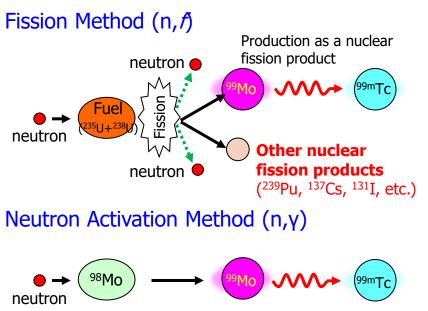
- 1. Introduction
- 2. Selection for 99Mo Production
- 3. Concept of Production Flow by $(n, \gamma)^{99}$ Mo
- 4. Extraction Methods of Tc-99m
- 5. Solvent Extraction
- 6. Column Method
- 7. Mo Recycling Development
- 8. Conclusion

1. Introduction

- Technetium-99m (99m Tc; $T_{1/2}$ =6 h) is used in over 30 million medical imaging procedures worldwide every year. (about 80% of all nuclear medicine procedures)
- <u>Japan is the world's third-largest consumer of 99 Mo (99 Mo; $T_{1/2}$ =66 h, 99 mTc is daughter nuclide of 99 Mo), and relies entirely on imports for its demand.</u>
- Recently, it has been difficult to carry out a <u>stable supply of ⁹⁹Mo/^{99m}Tc for some problems such as aging of reactors which producing ⁹⁹Mo and obstructions in transportation.</u>
- The irradiation target for ⁹⁹Mo production has been changed to the low enriched uranium (LEU) from viewpoints of nuclear security and so on. However, ⁹⁹Mo production with LEU has some problems.

Thus, 99 Mo production by (n, γ) method has been developed as a resolution of the above problems under the project of the Tsukuba International Strategic Zone.

In this presentation, the R&D items and the experimental results for the ⁹⁹Mo/^{99m}Tc production development in this project is introduced.

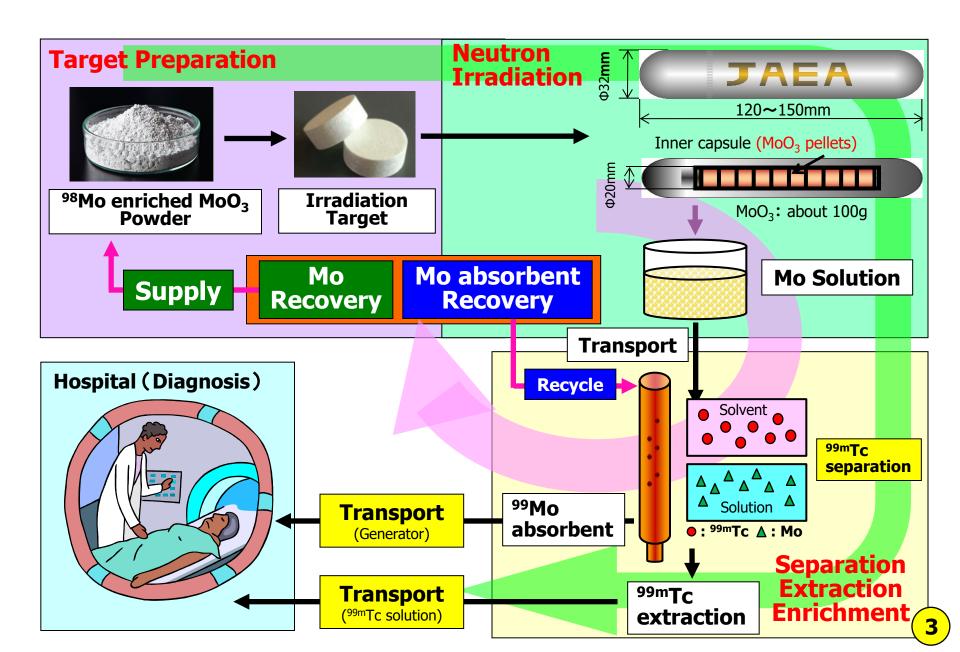

2. Selection for ⁹⁹Mo Production

99 Mo is produced almost all with enriched uranium.

- Limited availability of highly-enriched Uranium,
- Necessity of a technology similar to nuclear fuel recycling
- Necessity of management in term of non-proliferation and nuclear security

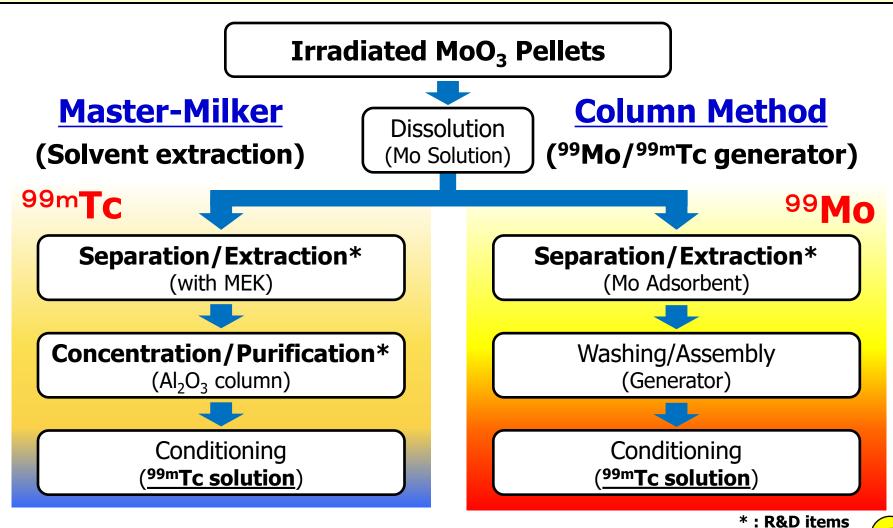
Production Methods of 99Mo

Comparison between Production Methods



		_
	(n, <i>f</i>)	(n, γ)
Use of Uranium	Yes	No
Generation of Pu	Yes	No
Nuclear Proliferation Resistance	Low	High
Specific Activity	High	(Low)
⁹⁹ Mo Production Cost	High	(Low)

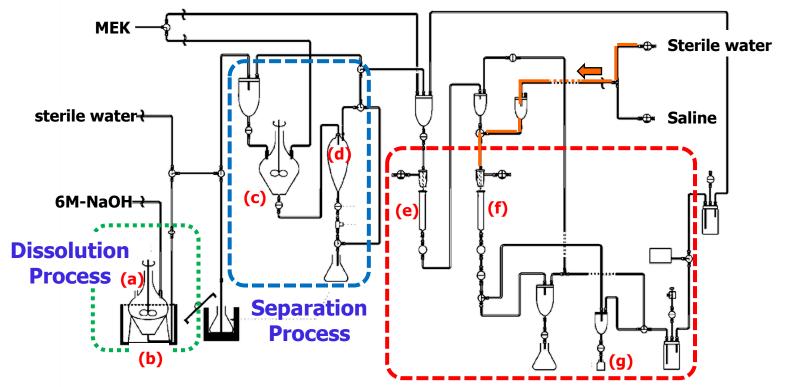
Mar. 2012: Seoul Nuclear Security Summit (Key actions)


- 1) Commitments from the governments of the four countries to support conversion of European production industries to non-HEU-based processes around 2017.
- 2) Support for U.S. exports of HEU to the European isotope producers to enable continued Mo-99 production until the facilities can convert to LEU targets.

3. Concept of Production Flow by $(n, \gamma)^{99}$ Mo

4. Extraction Methods of Tc-99m

The $(n, \gamma)^{99}$ Mo is of **lower specific activity** than the fission ⁹⁹Mo. It is necessary for utilization of $(n, \gamma)^{99}$ Mo to develop the **extraction and concentration** methods of 99mTc solution through the extraction devices or 99Mo/99mTc generators.


5. Solvent Extraction – Concept –

The preliminary extraction tests were performed with the MoO₃ pellets irradiated at JRR-3M in the JMTR hot laboratory.

[Process for Tc-99m Extraction]

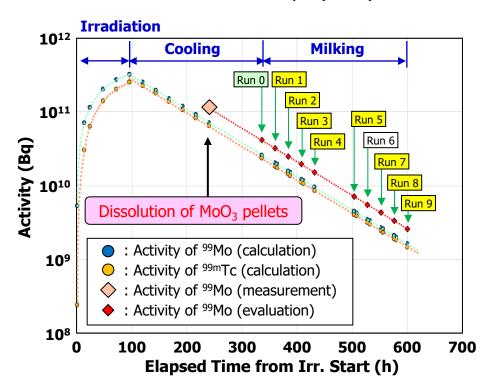
[Apparatus for Tc-99m Extraction]

Purification/Concentration Process

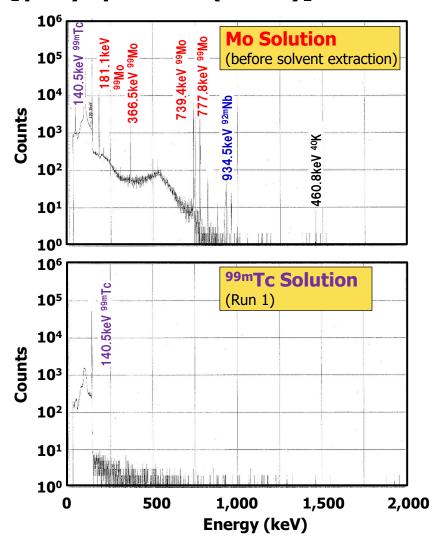
(a) Inlet of MoO_3 pellets, (b) Dissolution container, (c) Mixture container, (d) Separation and extraction container, (e) Basic-Alumina column, (f) Acidic-alumina column, (g) Recovery bottle

5. Solvent Extraction – Experimental Results (1) –

[Evaluation of Activity]


Irradiation Conditions

Irr. Reactor : JRR-3


Irr. Device : Hydric Rabit

 ϕ_{th} : 0.9 – 1.0x10¹⁴ n/cm²/s

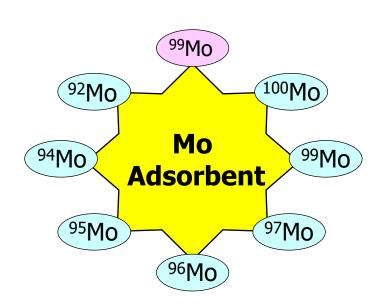
Irr. Time : 4 days (96 h)

[γ-ray spectrum (Run 1)]

- ➤ In addition to ⁹⁹Mo and ^{99m}Tc, ^{92m}Nb was detected in the Mo solution.
- The ^{99m}Tc solution had only ^{99m}Tc peak, confirming its high purity.

5. Solvent Extraction – Experimental Results (2) –

Items	Standard values	Experimental Number				
		Run 1	Run 2	Run 3	Run 7	Run 8
Appearance	Colorless and transparent	Good	Good	Good	Good	Good
Radiochemical Purity	<u>></u> 95 %	98	98	97	99	99
Radionuclidic Impurity	<u><</u> 0.015 %	N.D.	N.D.	N.D.	N.D.	N.D.
рН	4.5 – 7.0	5.8	5.6	5.4	6.2	6.0
Osmotic Pressure	About 286 mOsm	292	294	291	289	286
Chemical Impurity Al (ppm) Mo (ppm) MEK (ppm)	< 10 ppm - < 5,000 ppm	< 10 1.03 117	< 10 2.29 99	< 10 1.85 59	< 10 3.28 166	< 10 2.25 102
Endotoxin	< 0.03 EU/mL	Bad	Good	Good	Bad	Good
Labeling Test	<10 %	3.5	3.0	3.2	4.2	5.3


3 of 5 samples passed the quality test criteria. The remaining 2 samples failed the endotoxin test. The reason for the failures was inadequate cleaning of alumina and sterilization of the collected bottles.

6. Column Method – Mo Adsorbent Development –

It is necessary for $^{99}\text{Mo}/^{99m}\text{Tc}$ generators loaded with $(n, \gamma)^{99}\text{Mo}$ to develop the Mo adsorbents with high Mo absorption amounts. Some Mo adsorbents have been fabricated and the characterization of these adsorbents was carried out.

$[(n, \gamma)^{99}Mo]$

- 1) Lower specific activity
- 2) Stable isotopes in Mo after irradiation

High Mo adsorption performance is required

[Candidate Mo adsorbent]

Inorganic polymer-based adsorbents

- Polyzilconium compound (PZC)
 (synthesized from Zirconium tetrachloride)
- New Polyzilconium compound (New PZC)
 (synthesized from zilconium alkoxide)
- Polytitanium compound (PTC)

PZC, New PZC, and PTC have high Mo adsorption performance, but their use in pharmaceutical applications is challenging.

Alumina-based adsorbents

 Hierarchically macro-/mesoporous γ-alumina (HMMA)

6. Column Method – New typed Mo Adsorbent –

Mo absorption amounts

Mo Adsorbent	Mo Absorption Amounts	Appearance Image
PZC	250 mg/g	
New PZC	165 mg/g	
PTC	250 mg/g	
НММА	90mg/g	

- •HMMA was synthesized to develop a recyclable Mo adsorbent manufacturing technology as an alternative to Inorganic polymer-based adsorbents.
- •The Mo adsorption capacity of conventional alumina is 20 mg/g, whereas HMMA achieved 90 mg/g.

Future challenges

- During Mo adsorption, the particle strength weakened, and particle fragmentation occurred.
- Improvement of particle strength is necessary.

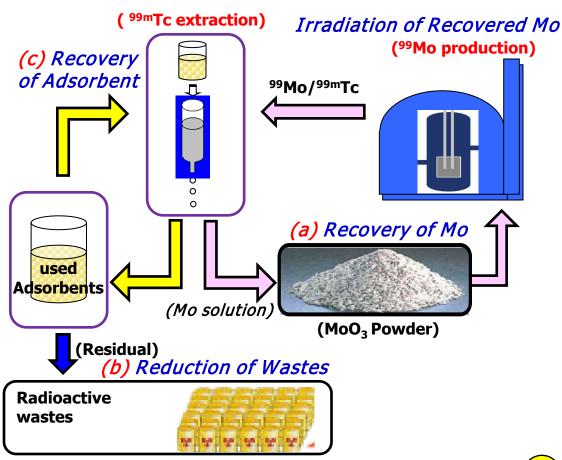
7. Mo Recycling Development – Concept –

 MoO_3 is used as the irradiation target for the production by $(n, \gamma)^{99}Mo$. Recycling technology development is proposed to recover molybdenum (Mo) for the effective use of resources and reduction of radioactive wastes.

[Subjects for Mo Recycling]

(a) Recovery of Mo resource

Mo recovery from the Mo solution and used ⁹⁹Mo/^{99m}Tc generators (PZC, etc.) and utilization of recovered Mo.


(b) Reduction of Wastes

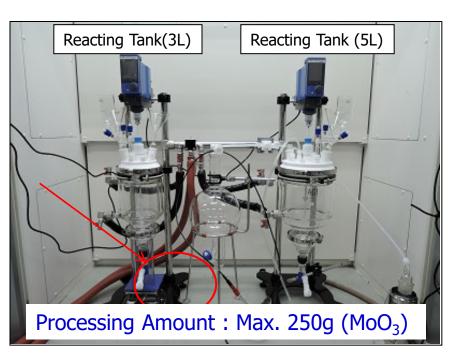
Treatment and waste reduction of used MEK and adsorbents (PZC, etc.) and Mo solution

(c) Recovery of Mo adsorbent

Development of reusable ⁹⁹Mo/^{99m}Tc generators

[Mo Recycling System]

7. Mo Recycling Development – Experimental Results –


[Process for Mo Recycling]

Mo **Solution**

♦ Acid precipitation
Purification
♦ Calcination

 MoO_3 **Powder**

[Apparatus for Mo Recycling]

[Experimental Results]

Process	Methods	Column method	Solvent Extraction Method
Mo Solution	Mo Concentration (g/L)	54	33
	Na Concentration (g/L)	28	45
Acid Precipitation	Solution Volume (L)	2.72	2.56
	Mo Concentration (g/L)	0.218	0.238
Purification	Solution Volume (L)	5.49	5.32
	Mo Concentration (g/L)	0.307	0.389
Mo Recovery Rate (%)		96.58	97.51
Calcination	MoO ₃ Recovery Rate	90%	94%

- It is possible to recover Mo from Mo eluent from the column method.
- It is possible to recover Mo from Mo waste solution from the solvent extraction method.

The recovered MoO₃ powder was of high purity with an average particle size of 3 µm.

8. Conclusion

- (1) In the solvent extraction with MEK, it is possible to remove impurities such as ^{92m}Nb from the Mo solution in which irradiated MoO₃ has been dissolved. Additionally, the quality of the obtained ^{99m}Tc solution largely achieved the research and development target values.
- (2) Various Mo adsorbents with higher Mo adsorption performance were developed compared with existing Al_2O_3 adsorbents. New developed Al_2O_3 need to be improved Mo adsorption performance.
- (3) Mo recovery rate from the used-Mo solution and the used-adsorbents was more than 90% and contribution to an efficient supply and low cost production can be realized by $(n, \gamma)^{99}$ Mo.

12

Thank you for your attention