

# Production of Lu-177 Using JRR-3 and PWR

**Anzu Watanabe** 

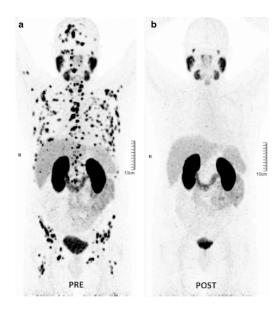
**Tokyo City University** 

Shunsuke Fujino\*, Naoyuki Takaki\*\*

\*Japan Atomic Energy Agency, \*\*Tokyo City University






#### **Outline**

- Background
- Objectives
- Medical Isotope Lu-177
  - Lu-177 production route in reactor
  - Unnecessity of Lu-177m
- Experiments and calculation of JRR-3
  - Core Specifications of JRR-3
  - C/E value evaluation of Lu-177 production
- Lu-177 production calculation at PWR
  - Calculation conditions of PWR and Lu target
  - Lu-177 production amount and specific activity
  - Lu-177 annual generation evaluation
- Conclusions

#### 東京都市大学

## Background

- Lu-177(half-life: 6.7day) is a medical radio isotopes used to treat Castration-Resistant Prostate Cancer(CRPC) and neuroendocrine tumors.
- Japan currently relies entirely on imports for Lu-177, some concerns regarding this are the aging of overseas reactors and supplies could be disrupted during transportation.
- Achieving domestic supply is a future challenge.



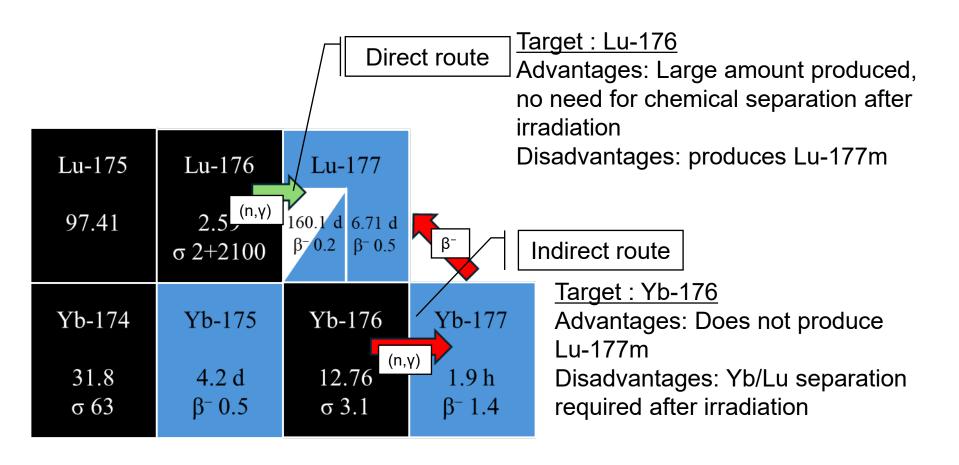


## **Objectives**



 Comparison with experiments and calculation of Lu-177 production at JRR-3

- Investigate the Lu-177 production using PWR to achieve Japan's demand
  - CRPC Annual patients: 10,000~15,000


Dosage: 7.4GBq × 6 times/person



## **Medical Isotope Lu-177**



### Lu-177 production route in reactor

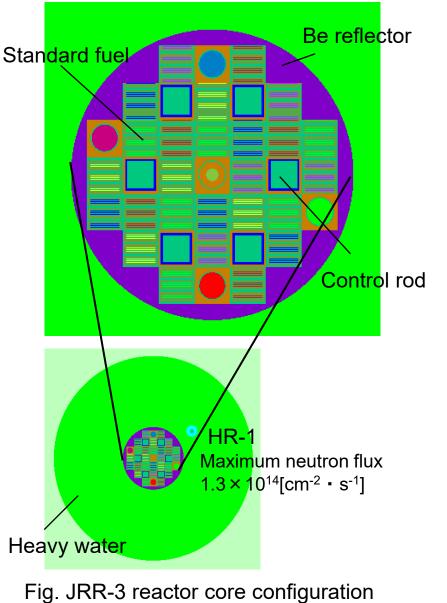


## Contamination of Lu-177m 東京都市大学

- ➤ Half-life: 160.1 day
- > A byproduct produced by the direct route
- ➤ Concerns: accumulation of radioactivity in the human body, radioactive waste management, and radiation protection measures.

Specific activity: >740GBq/mg-Lu

Purity(Lu-177m/Lu-177): <0.05 %


NCA (no carrier added) without Lu-177m is preferred.



## **Experiments and Calculation of JRR-3**

## Core specifications of JRR-3 東京都





| Tahla  | Core | <b>Specifications</b> | Ωf   | IRR-3 |
|--------|------|-----------------------|------|-------|
| Table. | Core | Specifications        | OI v | ノベベ-り |

| Thermal power                | 20 MWt                                                                                                        |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| Maximum thermal neutron flux | 3.0 × 10 <sup>14</sup> n/cm <sup>2</sup> ⋅s                                                                   |  |
| Core average temperature     | 325 K                                                                                                         |  |
| Core size                    | Diameter : 60 cm<br>Height : 77 cm                                                                            |  |
| Core materials               | Standard fuel: 26 bottles<br>Follower type fuel: 6 bottles<br>Irradiation tube: 5<br>Be reflector: Peripheral |  |
| Reflector                    | Heavy water tank                                                                                              |  |



### Lu-177 production experiments at JRR-3

- ➤ Experiments and calculation of Lu-177 production were conducted in JRR-3 reactor.
- Experiments were performed under the following conditions and calculated under the same conditions.

| Target               | Lu-176(64.3 % enriched) |  |
|----------------------|-------------------------|--|
| Mass                 | 0.094 mg                |  |
| Irradiation position | Hydraulic rabbit(HR-1)  |  |
| Irradiation days     | 14days                  |  |



### Calculation specifications

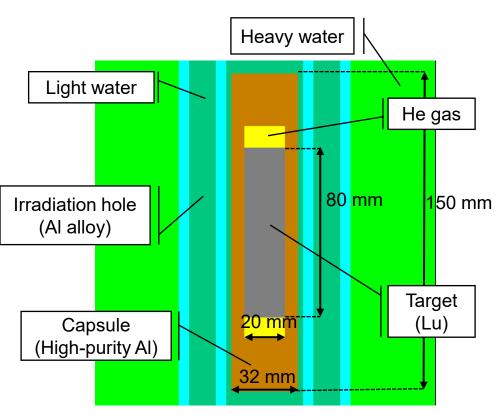



Fig. Target configuration loaded in hydraulic irradiation hole (HR-1)

#### Table. Calculation specifications

| Target isotope            | Lu-176<br>(64.3 % enriched) |  |
|---------------------------|-----------------------------|--|
| Target Mass               | 0.094 mg                    |  |
| Irradiation position      | Hydraulic rabbit(HR-1)      |  |
| Irradiation days          | 14days                      |  |
| Calculation code          | MVP-BURN                    |  |
| Nuclear date<br>library   | JENDL-5.0                   |  |
| Total number of histories | 1,000,000                   |  |



#### C/E value evaluation of Lu-177 production

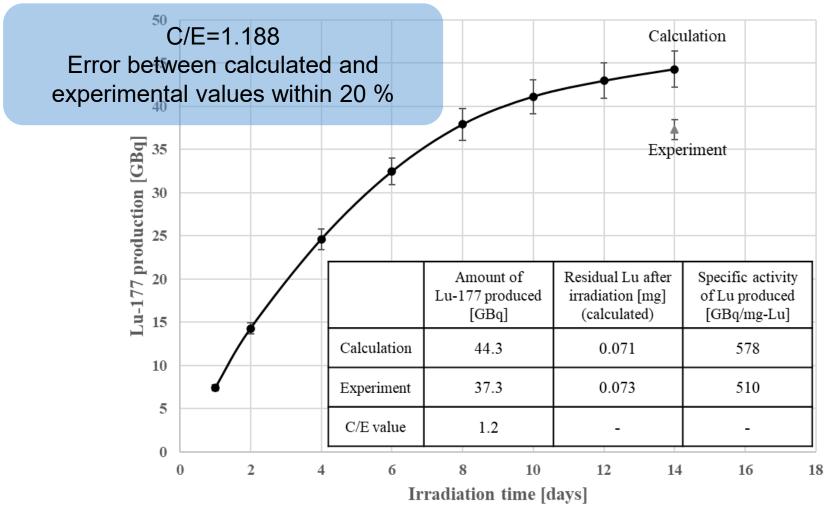



Fig. Lu-177 production at HR-1 irradiation position



## Lu-177 Production Calculation at PWR



#### Calculation specification of Lu target in PWR

#### ➤ Evaluation of Lu-177 production at PWR

|                           | <u> </u>                                                                                |  |
|---------------------------|-----------------------------------------------------------------------------------------|--|
| Thermal power             | 17.7 MWt                                                                                |  |
| Fuel specification        | PWR 1 assembly (Fuel assembly type:17 × 17)                                             |  |
| Target isotopes           | Natural Lu, Natural Yb<br>Lu-176 (70% enriched)<br>Yb-176 (70% enriched)                |  |
| Target mass               | 0.1 mg                                                                                  |  |
| Loading area              | Instrumentation tube located at the center of the fuel assembly (Axial center position) |  |
| Irradiation time          | 14 days                                                                                 |  |
| Calculation code          | MVP-BURN                                                                                |  |
| Nuclear date library      | JENDL-5.0                                                                               |  |
| Boundary condition        | Infinite                                                                                |  |
| Total number of histories | 1,000,000                                                                               |  |
|                           |                                                                                         |  |

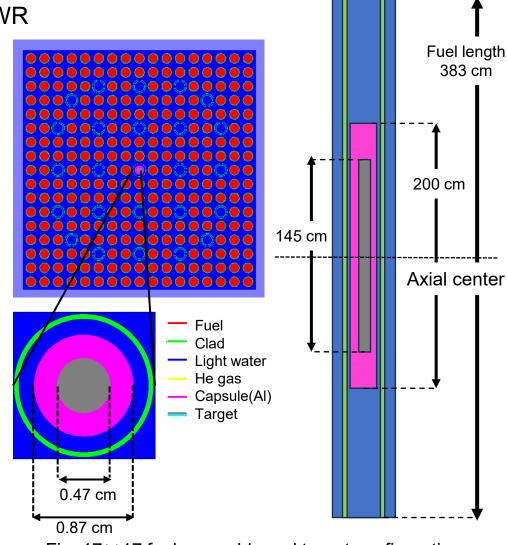



Fig. 17×17 fuel assembly and target configurations

#### Lu-177 production amount



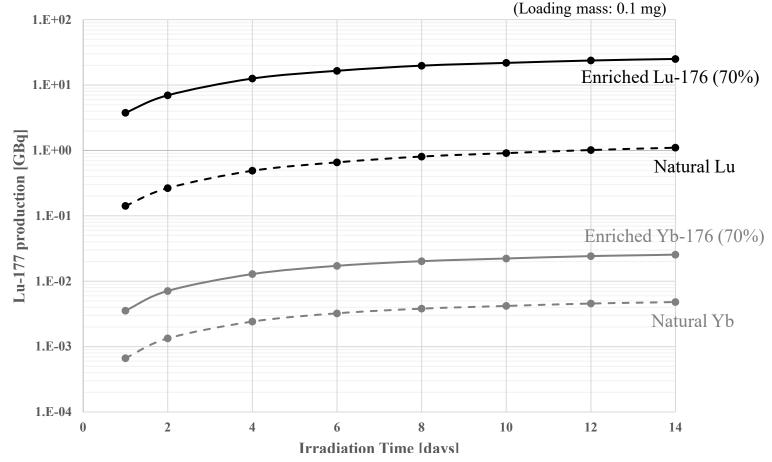



Fig. Lu-177 production in PWR with different targets

- Increased production is similar for the four nuclides.
- > The production is approximately 200 times higher in the Lu than in the Yb.
- ➤ 70% isotope enrichment in the Lu results in an additional increase of 10³ times.



## Specific activity of Lu-177 produced

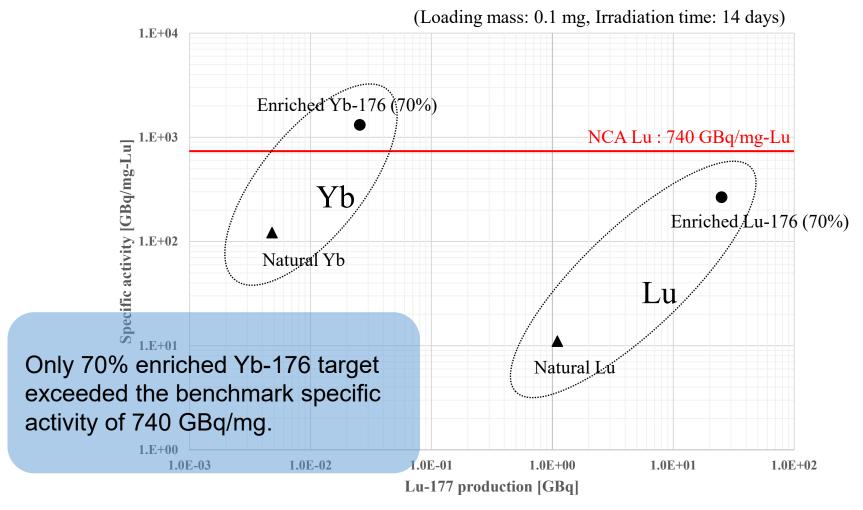
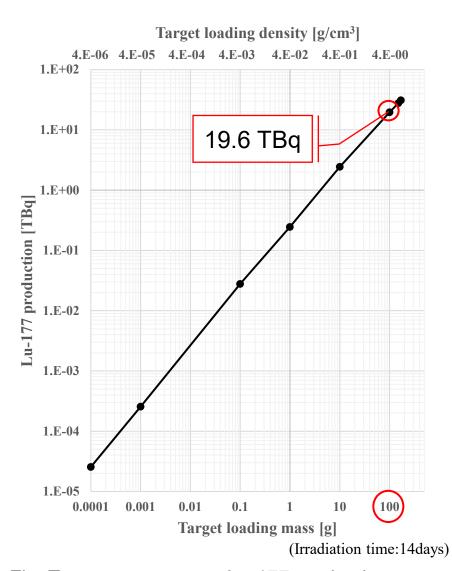



Fig. Lu-177 production amount versus specific activity after 14 days of irradiation



#### Performance comparison of Lu-177 produced


Table. Mass and quality of Lu-177 produced in PWR

|                 | Amount of Lu produced [GBq] | Specific activity<br>of Lu-177 produced<br>[GBq/mg-Lu] | Purity<br>(Lu-177m/Lu-177)<br>[%] |
|-----------------|-----------------------------|--------------------------------------------------------|-----------------------------------|
| Natural Lu      | 1.1                         | 11                                                     | 0.01                              |
| Enriched Lu-176 | 25.1                        | 266                                                    | 0.01                              |
| Natural Yb      | 0.005 1/1000                | <sub>121</sub> ×5                                      | 0.000026                          |
| Enriched Yb-176 | 0.026                       | 1316                                                   | 0.000002                          |

While Yb targets yield less Lu-177 than Lu targets, their specific activity was considerably higher and approximately one five-thousandth of purity.

→ The production method using enriched Yb-176 is considered the most suitable.

#### Yb-176 requirement for annual Lu-177 production



Yb-176 loading weight: 100 g/assembly

Irradiation + Unloading/Separation (2 weeks) (1 week)

- = 3 weeks/batch
- → Assuming 17 irradiations per year



Amount of Lu-177 produced = 19.6 TBq × 17 irradiation = 333 TBq/year →**7500 person** 

Yb-176(200g) irradiation with 2 assemblies/reactor

Capable of supplying 15,000 patients (number of CRPC patients per year)

Fig. Target mass versus Lu-177 production amount



#### Conclusions

- Lu-177 production experiments were conducted at the research reactor JRR-3 of the Japan Atomic Energy Agency.
  - 1 Ci of Lu-177 was produced from 0.1 mg of enriched Lu-176 (63.4%) for 14 days irradiation.
  - The calculated results agreed with the experimental values within 20% error.

- Investigation of Lu-177 production method by pressurized water reactor (PWR)
  - The irradiation of 200 g of enriched Yb-176 suggests a feasible approach for supplying Lu-177, which is carrier-free and has high specific activity to all CRPC patients in Japan (approximately 15,000 patients per year).



### Lu-177 medical utilized



- Lu-177-PSMA(Not yet approved in Japan)
- →CRPC (Castration-Resistant Prostate Cancer)
  - PSA (prostate-specific antigen) levels are used as a diagnostic indicator for prostate cancer
  - Higher PSA = higher likelihood of prostate cancer
  - German Lu-177-PSMA trial (mCRPC patients):
    - 21 of 30 patients showed PSA reduction
    - 13 of them had >50% reduction in PSA

- Lu-DOTATATE(Approved in Japan)
- →NET(neuroendocrine tumors)



## Radiation Safety and Waste Management Issues

- Lu-177m/Lu-177 ratio doubles after a 1-week delay in use.
- All radioactive waste must be stored in dedicated decay facilities (may take years).
- ~80% of dose (1.45 MBq) is excreted in urine
   → requires holding tank storage.
- Regulatory limit for Lu-177m disposal: 10 Bq/g.
- Significant dilution is needed before discharge.

## MVP-BURN burnup chain



Hf-174 Hf-175 Hf-178 Hf-172 Hf-173 Hf-176 Hf-177 Hf-179 Hf-180 35.08 1.87y 23.6h 0.16 70d 5.2 18.6 13.6 \*5.47h 2.0E15y 451.4m 25.05d \*18.67s \*1.09s Lu-171 Lu-173 Lu-174 Lu-176 Lu-177 Lu-179 Lu-172 Lu-175 Lu-178 8.24d 6.70d 1.37y 3.31y 97.4 8.4m 4.59h \*1.32m \*3.7m \*142d 3.76E10v 6.6470 23.1m \*3.1ms \*3.664h Yb-170 Yb-171 Yb-176 Yb-177 Yb-172 Yb-173 Yb-174 Yb-175 Yb-178 911h 1.23h 2.98 18 68.2ms \*6.41s Tm-169 Tm-170 Tm-171 Tm-175 Tm-177 Tm-172 Tm-173 Tm-174 Tm-176 100 128.6d 1.92y 2.65d 8.24h 15.2m 1.9m 1.50m 5.4m



## Neutron capture cross section

Direct route

Lu-176 
$$\downarrow$$
 Lu-177  $\downarrow$  Lu-178  $\beta^{-100\%}_{2095 \text{ b}}$   $\beta^{-100\%}_{880 \text{ b}}$  Hf-176 Hf-177

Indirect route

Yb-176 
$$\rightarrow$$
 Yb-177
 $(n,\gamma)$ 
 $2.8 \text{ b}$ 
 $\beta^{-100\%}$ 
Lu-177

## Calculation of specific activity

 In the JRR-3 experiments, using the Westcott formalism, Lu-177 burnup was considered to calculate the amount of Lu remaining after irradiation.

Westcott formalism

The Westcott formalism is a method used to accurately evaluate the reaction rate with thermal neutrons for nuclides whose neutron cross section ( $\sigma$ ) does not follow the 1/v law.

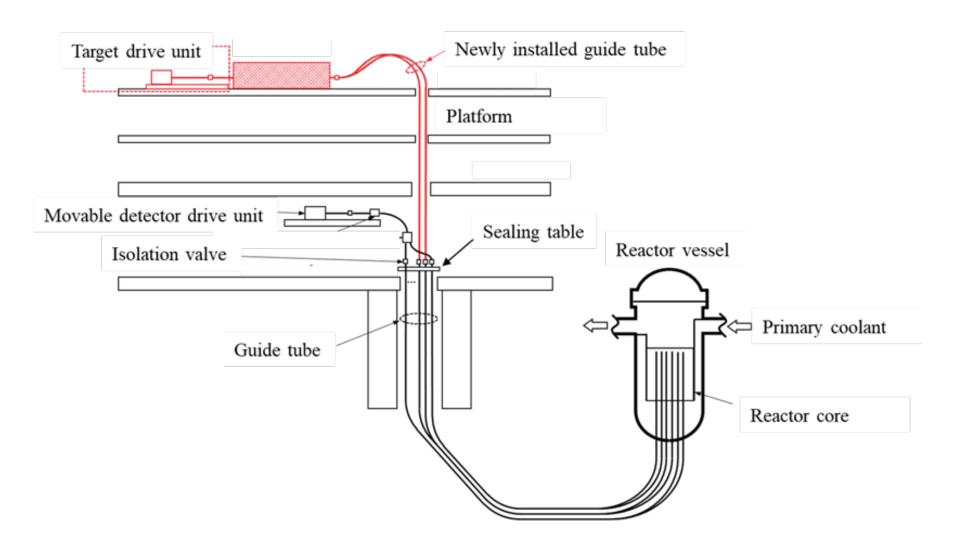




JRR-3 HR-1 irradiation hole

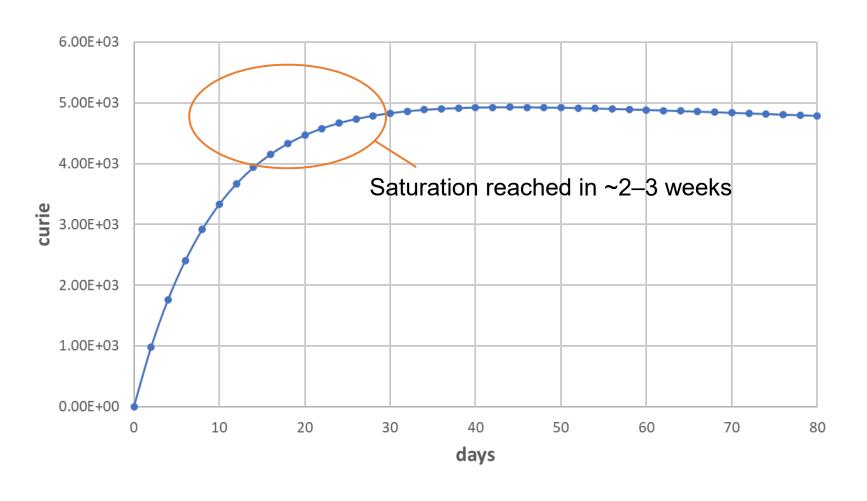
Reference value(maximum):  $1.3 \times 10^{14}$ [cm-2 • s-1]

Analysis value:  $1.33 \times 10^{14} [cm-2 \cdot s-1]$ 

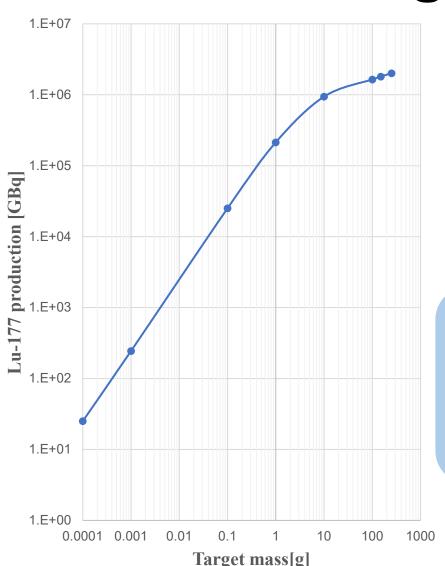

PWR instrument guide tube position

Analysis value:  $1.33 \times 10^{13}$ [cm-2 • s-1]

Reference value(core average): 3.0 × 10<sup>14</sup>[cm-2 • s-1]




## Instrument guide tube




### **Irradiation time**





# Lu-177 annual production 東京都市 from Lu-176 target



- Target loading: 0.1 g/assembly
- Yield: 25 TBq/3-week batch
- Annual output: 425 TBq/year
- Equivalent to: ~9,572 patients/year (based on 44.4 GBq/patient)

- Enriched Lu-176 requires only 1/1000 the mass
- Produces similar Lu-177 yield as enriched Yb-176



### Price Range of Lu and Yb Isotopes

- Lu-176(72% enrichment): 205,50EURO/mg  $33,574 \text{ yen/mg} \rightarrow 3,357,400 \text{ yen/0.1g}$
- Yb-176(97.79% enrichment): 16,95EURO/mg
   2,769 yen/mg → 276,900,000 yen/100g
- 1 EUR=163.38 yen

<u>Stable Isotope Prices | Institute for Rare Earths and Metals (institut-seltene-erden.de)</u>