Activation Test of High-Density MoO₃ Pellets for Production of ⁹⁹Mo Using Multipurpose Research Reactor (RSG-GAS)

June2025

Koichi Mimura, CTC

Badan Riset dan Inovasi Nasional (BRIN) and Chiyoda Technol Co. (CTC)

BRIN

Herlan Setiawan¹, Rohadi Awaludin¹, Tita Puspitasari¹, Marlina¹, Indra Saptiama¹, Miftakul Munir¹, Moch Subechi¹, Chaidir Pratama¹, Ahid Nurmanjaya¹, Arni Aries¹, Anis Rohanda¹

1: Research Center for Radioisotope, Radiopharmaceuticals and Biodosimetry Technology, National Research and Innovation Agency, BRIN, Indonesia.

Endang Sarmini², Daya Agung Sarwono²

2: Directorate for Nuclear Infrastructure Management, National Research and Innovation Agency, BRIN, Indonesia.

CTC

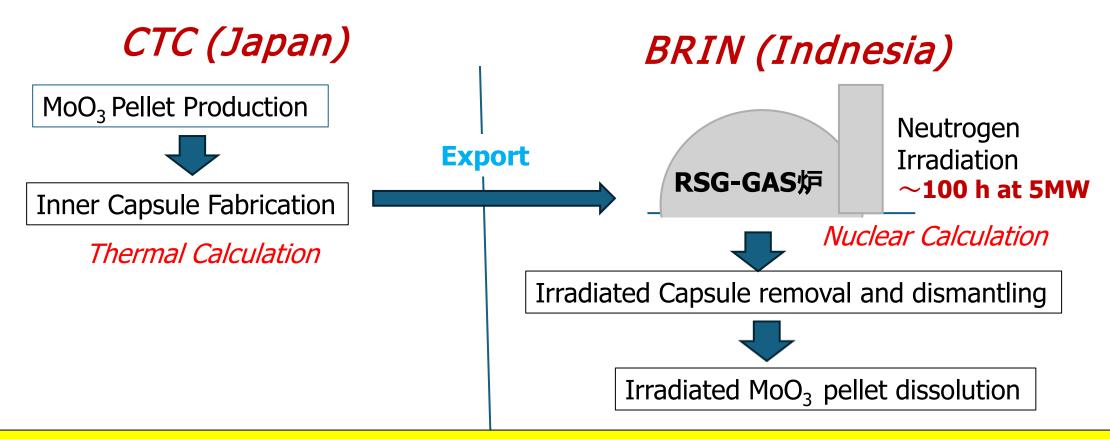
OKoichi Mimura, Akio Ohta, Takashi Saito, Takashi Ishii, Kazutaka Tottori, Hiroshi Kawamura, Ataru Inoue, Toshikazu Hosoda

Significance and Purpose of Joint Irradiation Tests

Currently, 100% of the radioisotope ⁹⁹Mo (^{99m}Tc), which is used by about 1 million people annually as a radioisotope for cancer diagnosis in Japan, is the most widely distributed radioisotope in Japan. In addition, since about 1 million cancer patients occur annually in Japan, this radioactive isotope is positioned as an essential drug from the perspective of security to protect the safety and security of the people of Japan. For this reason, it has become indispensable to be able to stably import 99Mo in an emergency (stabilization by diversifying import destinations) and to partially localize the product.

From this point of view, we attempted to verify the technical feasibility of importing 99Mo using a research reactor (RSG-GAS reactor) owned by Indonesia with Indonesia, which has established a friendly cooperative relationship so far, while conducting irradiation tests. The results are reported jointly by BRIN and CTC.

Position between Indonesia and Japan


There are several direct flights a day.

Soekarno-Hatta International Airport (Jakarta) is about 40 km far from the institute.

As a member of the Global South, it is a very important country.

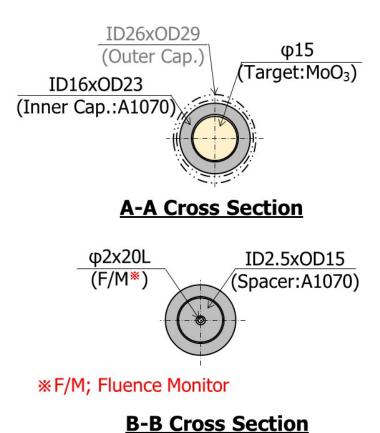
Flow of irradiation test

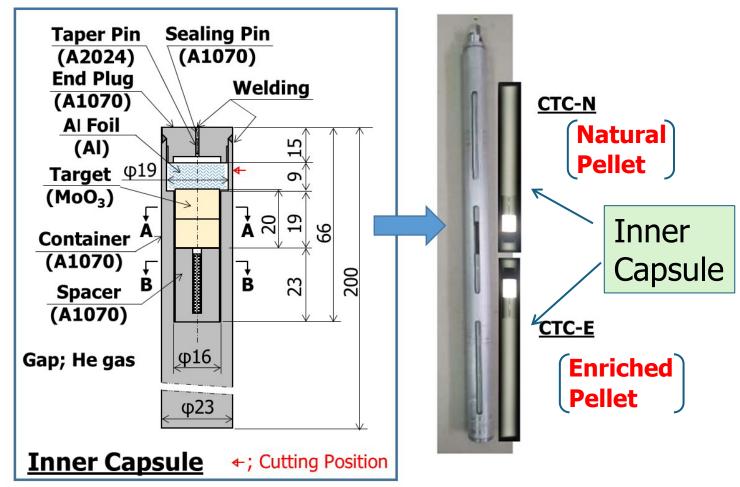
After removing the ampoule containing irradiated MoO₃ pellets from the reactor,A minimum of 3 days is required according to the procedures set by the country.

Therefore, it is 4 days later at the earliest to arrive at the hot facility in JRIA.

Since the end of irradiation (EOI) is on Friday, then capsule removal and dismantling can be done on Monday. While if the EOI ends on Monday/Tuesday, the process of can be done one day after.

MoO₃ Pellet Production


	Natura	l Pellet	Enriched Pellet		
Name	N1	N2	E1	E2	
⁹⁸ Mo Enrichment (%)	2	5	50		
Quantity (piece)	2		2		
Sintering Density (T.D.)	94.1	94.0	93.7	93.8	
Diameter (mm)	14.995	15.003	15.011	15.008	
Height (mm)	9.949	10.144	10.328	9.976	


- Two pellets were each loaded into one inner capsule.
- ○As a manufacturing method, Spark Plasma Sintering Method was used.
- \bigcirc After sintering, in order to convert MoO₂ on the pellet surface to MoO₃, pre-calcination is performed, and after pre-calcination it is verified that MoO₂ is not present by X-ray diffraction.

5

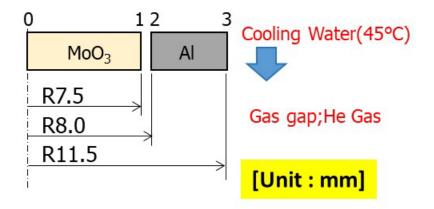
Capsule Outline

The outer surface of inner capsule contact to the flowing water on the pool due to the ventilation hole on the design of outer capsule

Flow rate of primer cooling water: 3.150 m³/h, Water temperature: 28.5 °C

Thermal neutron flux: 4.2 x10¹³ /cm²s

Thermal Calculation of Irradiation Capsule

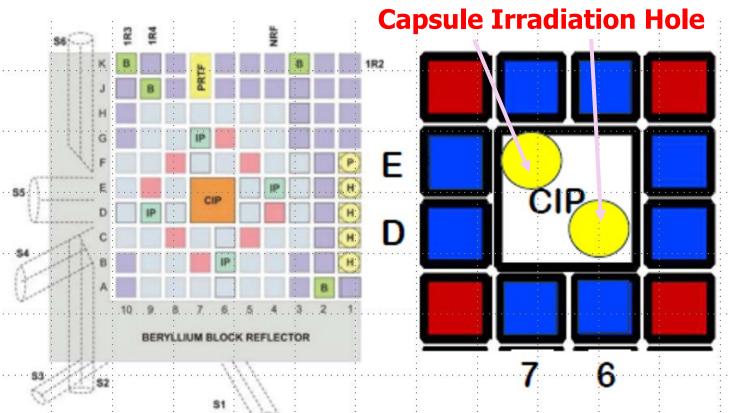

(1-D Calculation Code: GENGTC)

◆ <u>Calculation Conditions</u>

Item	Function	Data		
Heating Conditions	γ Heating Rate (Reactor power:5MWt)	1.03 [MoO ₃] , 0.831 [AI] (W/g)		
Cooling Conditions	Temp. of Cooling Water	45 (°C)		
	Surface Heat Transfer Coefficient	0.0116 (W/mm ² /°C)		
Specimen	Density	4.5E-3 (g/mm ³)		
Properties (MoO ₃ ;95%TD)	Thermal Conductivity	3.74E-3-9.96E-6 · T+2.64E-8 · T ² (W/mm/°C)		
	Thermal Expansion	1.343×1.0E-6 (/°C)		
Properties of Al and He gas		Data in GENGTC code		

◆ Calculation Model for 1-D Thermal Calculation

GENGTC; Generalized Gap Temperature Calculation

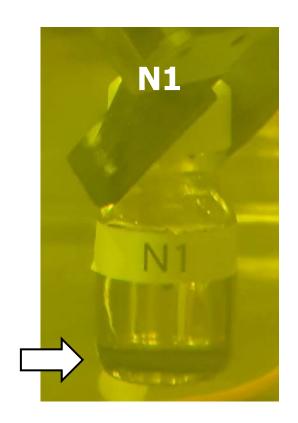


Node No.	Part Name	Temperature(°C)
0	Center of Pellet	119.2
1	Surface of Pellet	97.5
2	Inner Surface of Container	46.8
3	Surface of Container	46.5

Neutron Irradiation Information

BRIN was established in 2021 by integrating the policy research departments of Indonesian government-affiliated research institutes and ministries and agencies, such as the former Indonesian Academy of Sciences and the former Indonesian Agency for Technology Evaluation and Application.

Cross-sectional view of the core of the RSG-GAS reactor


Our capsule was irradiated in position E7

Item	Contents		
Rated power(MW)	30		
Neutron flux (n/cm²/s)	2×10 ¹⁴		
Coolant	Light water		
Fuel elements	MTR		
Fuel Material	U ₃ Si ₂ Al		
Number of basic fuel elements	40		
²³⁵ U enrichment rate (%)	19.75		
²³⁵ U density (g/cm ³)	2.96		
Reflective materials	Be (7		

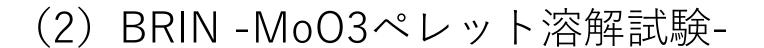
Observation of irradiated MoO3 pellet lysate

Dissolved liquid : 30 mL 6M-NaOHaq

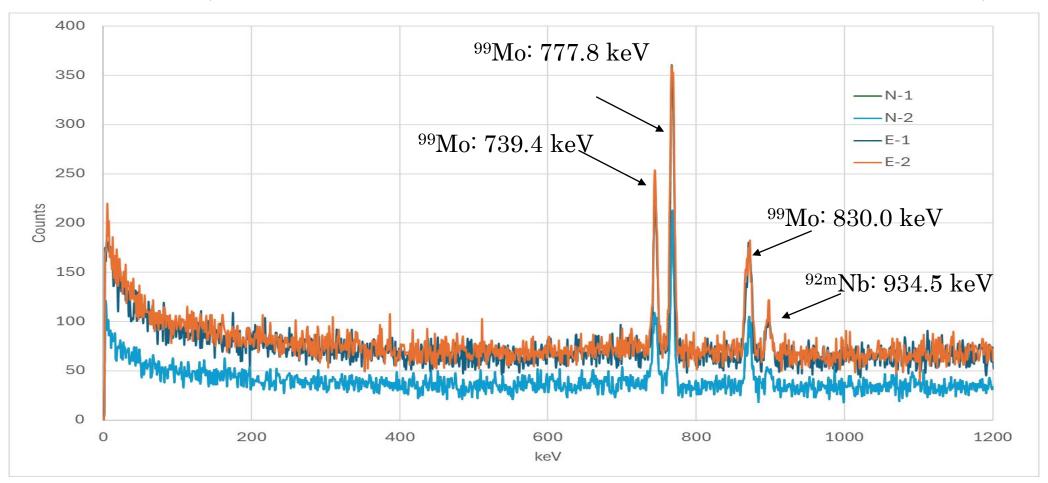
Only E1 was transparent, however the other solutions were black residue MoO_2 ? (\Rightarrow part) was observed. The insoluble precipitate is thought to be the result of MoO_3 reduction. Some literature mentions the possibility of the formation of the transition compound Mo_4O_{11} before MoO_2 . However, this is still not known for sure, further investigation is still needed.

Evaluation of the amount of ⁹⁹Mo produced in MoO₃ pellet solution

Pellet No.		N1	N2	E1	E2	E/N
⁹⁸ Mo Enrhment (%)		25		50		(50/)
Weight [g]		7.72	7.87	7.75	7.97	
⁹⁹ Mo Activity Measurement	(mCi)	1640.2	1671.6	3064.0	3271.6	_
	M (mCi/g)	212	212	395	411	1.90 (403/212)

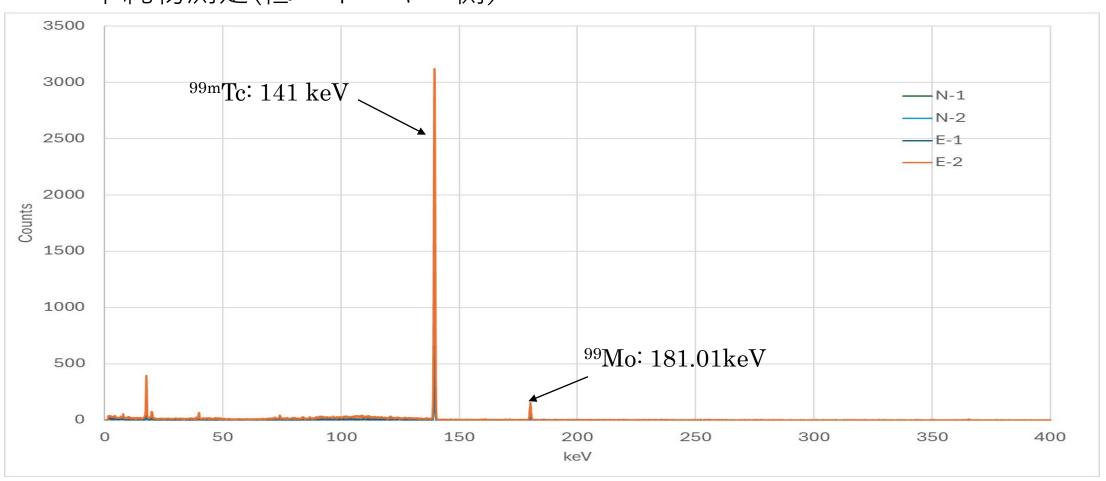

Currently, the calculated values are obtained by nuclear calculations using MCNP and ORIGEN.

Summary


- Joint activities between BRIN and CTC will allow us to share each other's technologies and experience and build a strategic partnership. It was able to gain a foothold. In addition, we would like to promote the exchange of views toward the establishment of effective and efficient cooperative relationships.
- \bigcirc Specifically, with regard to the production of ⁹⁹Mo solution, from the acceptance of irradiation capsule by BRIN to neutron irradiation. It was confirmed that each process such as capsule dismantling and MoO₃ pellet melting can be performed smoothly and accurately.
- O In order to actually start ⁹⁹Mo solution production, it is necessary to consider the following items.
 - ◆ Demonstration of irradiation capsule fabrication technology in Indonesia
 - Checking the accuracy of thermal calculations of irradiation capsule performed by BRIN
 - ◆Raw material quality inspection of ⁹⁹Mo solution by a pharmaceutical company in Japan
 - ◆Improvement of annual operating rate for stable supply (70~80% target)
 - ◆Detailed confirmation of the evaluation accuracy of the amount of ⁹⁹Mo produced when irradiating the 98Mo concentrated material

付録

・不純物測定(カウント数の高い低エネルギー側を鉛で遮蔽した場合)



Mo由来以外の放射性物質はできていない。 ⁹²Mo(n,p) ^{92m}Nb

(参考) BRIN - MoO₃ペレット溶解試験-

・不純物測定(低エネルギー側)

