

HANARO Management Division

2025.06.18

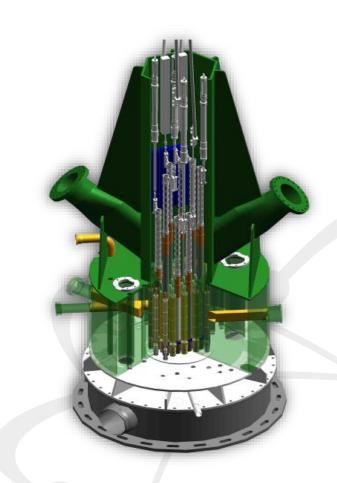
Replacement of Heat Exchanger

CONTENTS

- ▶ 01 Introduction
- ▶ 02 Reflector System Overview
- 03 Preparation and Set-up
- 04 Replacement Operation.
- ▶ **0**5 Results
- ▶ **0**6 Conclusion

» HANARO

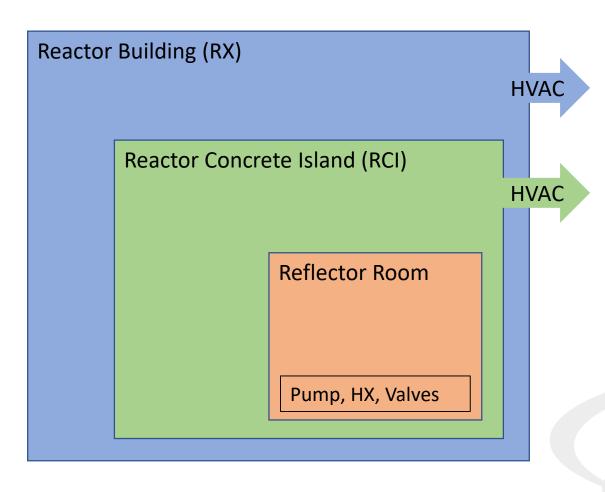
High-Flux Advanced Neutron Application ReactOr


- ✓ First criticality on 8 Feb. 1995
- √ 30MWth(Design Power)
- ✓ Primary Coolant is light water
- ✓ Reflector uses heavy water
- √ 32 Fuel assemblies are loaded
- ✓ 28 days of operation period
- ✓ Multi-purpose Research Reactor

General Features of HANARO

Туре	Open-tank-in-pool			
Power	30 MW _{th}			
Coolant	Light water			
Reflector	Heavy water			
Fuel Materials Enriched	Ս ₃ Si, 19.75%			
Absorber	Hafnium			
Reactor Building	Confinement			
Max Thermal Flux	4x10 ¹⁴ n/cm ² s			
Typical Flux at Port Nose	2x10 ¹⁴ n/cm ² s			
7 Horizontal Ports & 36 Vertical Holes				
Vertical Hole for Cold Neutron Source				
Operation Cycle 28 days@5 weeks				

Need for replacement of HX in reflector system


<Reflector Heat Exchanger>

- ✓ A few leakage events occurred on the secondary side of the heat exchanger
- ✓ After each leakage incident, the heat exchanger was further tightened to prevent additional leaks
- Eventually, tightening reached the minimum allowable stacking thickness, making further tightening no longer possible

Reflector System Overview

Reflector System Overview

Positional Overview of Reflector System

- Reflector room is maintained in a sealed condition
- ✓ RCI is maintained at a lower negative pressure than RX
- During maintenance, the reflector room must be opened and the negative pressure in the RCI can no longer be maintained
- Tritium management is essential during heat exchanger replacement

- Integrity of Spare Plates
- Mock-up Training
- Tritium Release Assessment
- Internal Exposure Estimation

Preparation of spare plates

√ Visual Inspection and Hydraulic pressure tests on spare plates

Mock-up training

- ✓ Disassembly and Removal of Existing Plates
- ✓ Installation and Reassembly with New Plates
- Estimate of Operation time and Potential Process water spill

Tritium Release Assessment

- Evaluation Assumptions
- 1. All tritium exists in the form of tritiated water vapor (HTO) in air
- 2. 21% of tritium in the RCI migrates into the RX
- 3. Continuous spillage of heavy water during HX replacement

$$c = c_0 e^{-\frac{Q}{V}t} + (\frac{E + Q c_1}{Q}) (1 - e^{-\frac{Q}{V}t})$$

Q m³/hr c Bq/m³

Q : Airflow rate through the reflector room

V: Volume of RCI (or RX)

c₁: Initial tritium conc. in air

E: Increase in airborne tritium due to evaporation

c: Tritium concentration released through stack

Tritium Release Assessment

	Release to the	he RX stack	Release to the RCI stack		
Time(t, hr)	Concentration	Cumulative	Concentration	Cumulative	
	(Bq/m^3)	release(Bq)	(Bq/m^3)	release(Bq)	
DRL	5.07E+07	6.25E+13	3.92E+08	6.25E+13	
0	1.00E+03	0.00E+00	1.00E+05	0.00E+00	
0.5	7.21E+04	5.51E+08	9.21E+06	1.63E+10	
1	1.27E+05	2.00E+09	1.02E+07	3.32E+10	
2	1.68E+05	4.15E+09	1.03E+07	5.01E+10	
4	2.68E+05	2.07E+10	1.03E+07	1.35E+11	
6	3.00E+05	5.42E+10	1.03E+07	2.71E+11	
8	3.03E+05	7.16E+10	1.03E+07	3.39E+11	
12	3.04E+05	8.91E+10	1.03E+07	4.07E+11	
24	3.04E+05	1.24E+11	1.03E+07	5.42E+11	

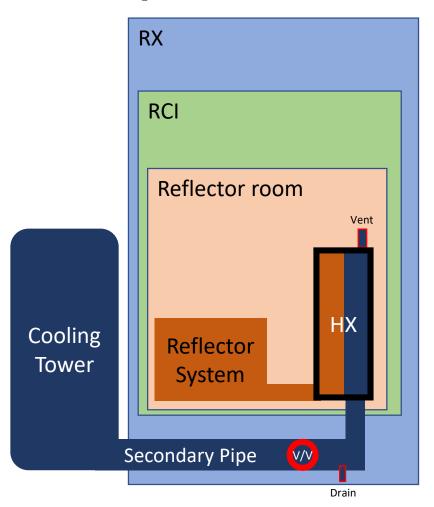
The Derived Release Limit (DRL) represents a calculated threshold for tritium emissions, derived by back-calculating from the permissible dose to members of the public in the unrestricted area. The estimated release level was lower than this limit.

Estimate of Internal Exposure

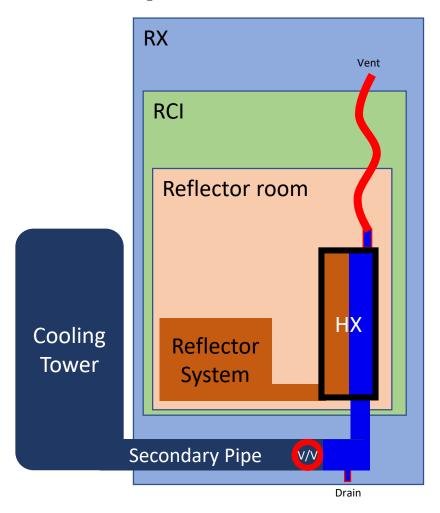
- ✓ Tritium concentration in the reflector room exceeds 100 DAC
- ✓ Positive-pressure full-body suit are required for all work
- ✓ Internal exposure was estimated based on past maintenances
- ✓ Estimated internal dose per worker : ~10 µSv/8hr

- Replacement Workflow
- Unexpected Tritium Contamination

Replacement Workflow


- ✓ DAY 1 : Isolate/drain secondary cooling water and heavy water
- ✓ DAY 2 : Disassemble, replace 79 plates, reassemble
- ✓ DAY 3 : Refill cooling and heavy water
- ✓ DAY 4 : Pressurization test and leak inspection

Unexpected Tritium Contamination

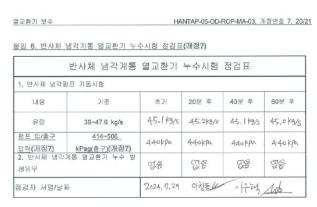


✓ Incident Overview

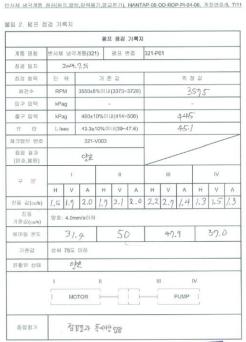
- Prior to refilling the heavy water, the secondary side was filled first
- Unexpected tritium was detected in the secondary-side water
- Tritiated air from the reflector room entered the secondary side through the vent valve during the initial drainage process

Unexpected Tritium Contamination

- ✓ Corrective actions
- Secondary side was flushed twice to remove tritium
- Connected extension hose to vent valve to intake clean air and prevent tritium re-contamination
- Tritium concentration reduced to normal levels
- ✓ Airborne tritium can easily dissolve into surface moisture, so this must be considered during the work



- System Integrity and Performance
- Tritium Release
- Worker Radiation Exposure



System integrity and performance

- √ No leakage was observed
- ✓ Normal heat exchange efficiency was verified through system operation
- ✓ No tritium was detected on the secondary side.

Count Conditions

Quench Indicator: tSIE/AEC
External Std Terminator (sec): 0.5 2s%
Pre-Count Delay (min): 0.00
Quench Set:
Low Energy: 3%
Count Time (min): 30.00
Count Mode: Normal
Assay Count Cycles: 1
#Vials/Sample: 1
Repeat Sample Count: 1
#Vials/Sample: 1
Calculate % Reference: Off

Background Subtract

Background Subtract: Off Low CPM Threshold: Off 2 Sigma % Terminator: Off Regions LL U

Regions	LL	UL
A	0.0	18.6
В	2.0	18.6
C	0.0	0.0

Count Corrections

Static Controller: On Luminescence Correction: Off Colored Samples: Off Heterogeneity Monitor: Off Coincidence Time (nsec): 18 Delay Before Burst (nsec): 75

Cycle	1 Results					
S#	Count Time	CPMA	DPM1	Eff Nucl In A		
1	30.00	1038	2232	46.49	1.13	DOM'T WEV
2	30.00	1057	2272	46.51		Re-Hx 21

Tritium Release and Public Dose

- ✓ Total tritium release: < 0.06% of daily release limit
- ✓ Peak concentration: < 0.5% of limit at both RX and RCI stacks
- ✓ Public dose: only 0.02% of the annual legal dose limit

Table 2 Daily Tritium Release: Actual, Estimated, and Limit Values

	RX		RC	Total	
	Peak conc.	Cumulative	Peak conc.	Cumulative	Cumulative
	(Bq/m^3)	release(Bq)	(Bq/m^3)	release(Bq)	release(Bq)
Day 1	3.75E04	2.80E09	1.41E06	6.23E10	1 42E11
Day 2	2.40E05	3.17E10	1.77E06	4.64E10	1.43E11
Estimate	3.04E05	6.16E11	1.03E07	2.44E12	3.06E12
Limit	5.07E07	6.25E13	3.92E08	6.25E13	-

Worker Radiation Dose

- √ Max internal dose (most exposed worker): < 0.08 mSv</p>
- ✓ Average internal dose: < 0.06 mSv</p>
- ✓ Average total dose per worker (internal + external): < 0.06 mSv</p>

- Although the levels are slightly higher than expected, they include all exposure accumulated during the preparation stage
- Moreover, the dose is still far below the annual exposure limit for radiation workers

Conclusion

Conclusion

Technical Outcome

- > Heat exchanger replacement was completed without leakage
- System performance and efficiency remained stable

Radiological Safety

- Tritium release was well below regulatory limits, public dose was negligible
- Average worker dose stayed below 0.06 mSv

Operational Insight

- > An unexpected tritium ingress was promptly identified and resolved
- Highlighted the importance of air management and pre-planning for tritium safety

THANK YOU

wtlee@kaeri.re.kr

