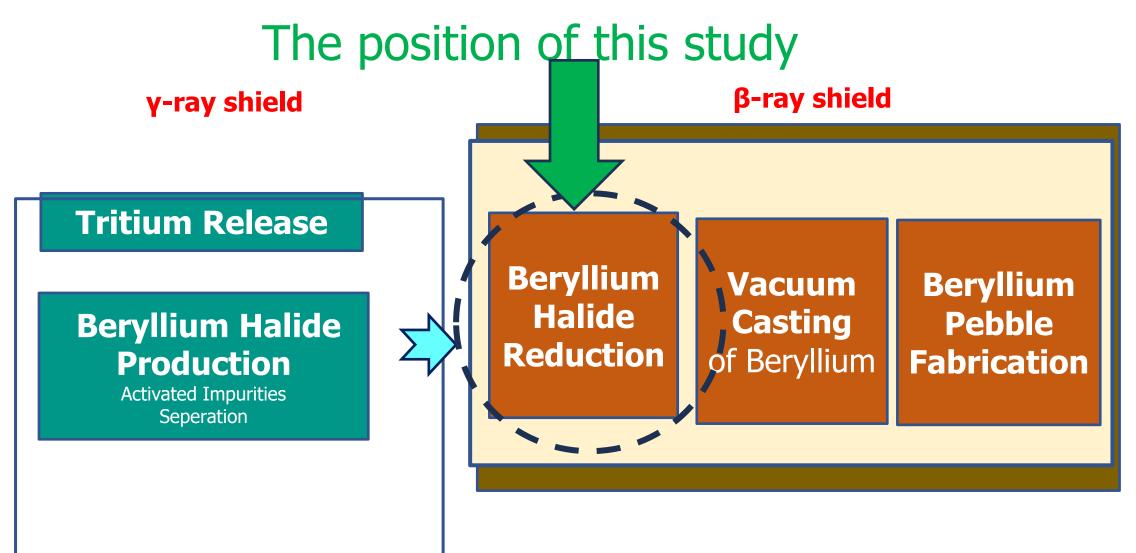
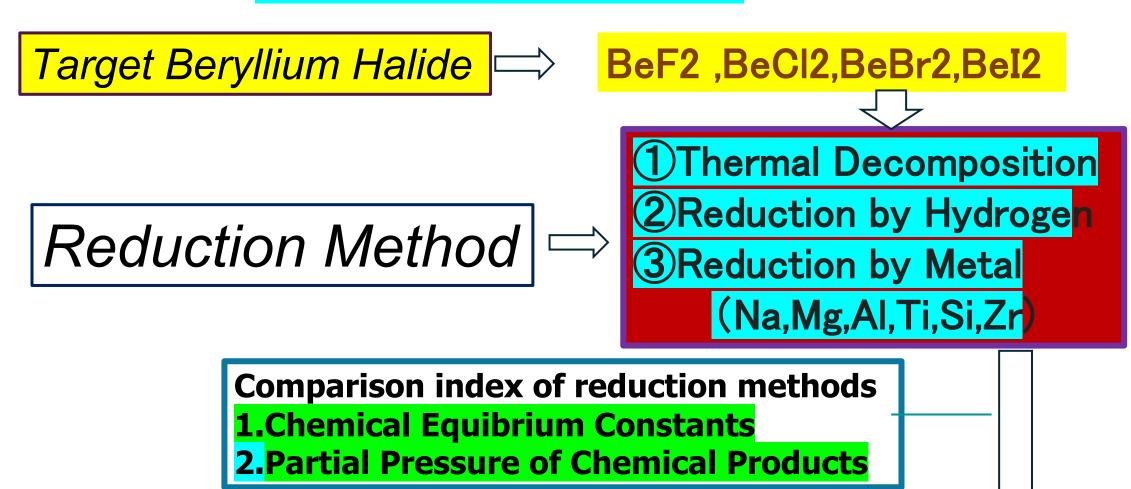

Feasibility Study for the Recycling of Irradiated Beryllium Reflectors in the Research Reactors


Masaaki NAGAKURA*1, Hitoshi KAWAJI*2, Hiroshi KAWAMURA*3, Hiroshi YOSHIMOCHI*3, Kazutaka TOTTORI*3, Hiroshi IDE*4, Kunihiko TSUCHIYA*4, Masanori KAMINAGA*4, Toshikazu HOSODA*3

*1: EcoDesign, Co. Ltd. *2: Institute of Science Tokyo, *3: Chiyoda Technol Co. *4: JAEA



Technology Stage for Beryllium Recycle

Concept Of this study

Comparative Evaluation of Reduction Method

Chemical Equations of Reduction

Thermal Decomposition

$$BeX_2 \Rightarrow Be+X_2$$
 (X = F, Cl, Br, I)

Reduction by Hydrogen

Reduction by Metal (Mg, Al, Ti, Si, Zr, Na)

BeX₂ + 2Na
$$\Rightarrow$$
 Be + 2NaX
BeX₂ + Mg \Rightarrow Be + MgX2
BeX₂ + 2/3Al \Rightarrow Be + 2/3AlX₃
BeX₂ + 1/2Ti \Rightarrow Be + 1/2TiX₄
BeX₂ + 1/2Si \Rightarrow Be + 1/2SiX₄

BeX₂ $1/2Zr \Rightarrow Be + 1/2ZrX_4$

Evaluation od Chemical Equilibrium Constants Kc-Value

Chemical Reaction

$$aA + bB \Rightarrow cC +$$

dD

Chemical Equilibrium Constant

$$K_c = rac{\left[C
ight]^c imes \left[D
ight]^a}{\left[A
ight]^a imes \left[B
ight]^b}$$

$Kc = EXP(-\Delta G/RT)$

Gibbs free energy change : $\Delta G = \Delta H - T\Delta S$

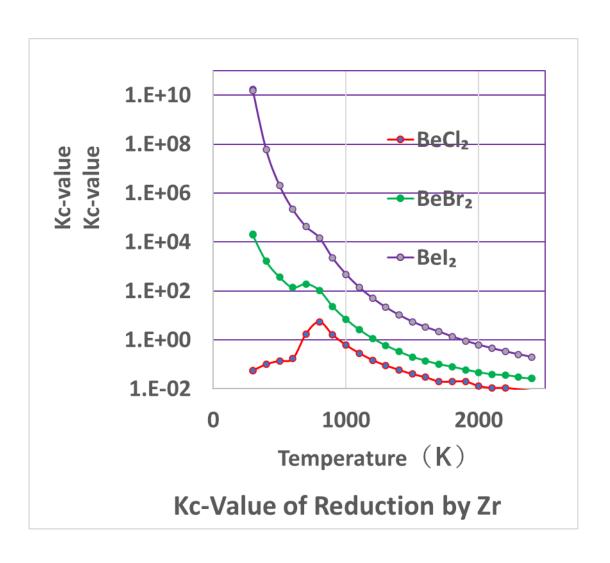
Enthalpy change: $\Delta H = c^*H(C) + d^*H(D) - a^*H(A) - b^*H(B)$

Entropy change: $\Delta S = c^*S(C) + d^*S(D) - a^*S(A) - b^*S(B)$

[Z]:Concentration orof Z

H(Z)&S (Z): DATA OF NIST

An Example of Kc-Value Evaluation


Reduction by Zr

Reduction Equations

$$BeCl_2+1/2$$
) $Zr \Rightarrow Be+(1/2)ZrCl_4$

$$BeBr_2+(1/2)Zr \Rightarrow Be+(1/2)ZrBr_4$$

$$Bel_2+(1/2)Zr \Rightarrow Be+'(1/2)Zrl_4$$

Comparison of Kc-Values

Reduction methd	rRank of Kc	MaximumKc	Tempe(K)*	BerylliumHalide	Product ofReductiom _
Na	1	2.E+23	900	BeBr ₂	NaBr
Mg	2	2.E+24	900	Bel ₂	MgI ₂
Z r	3	2220	900	Bel ₂	ZrI ₄
Ti	4	0.981	900	Bel ₂	Til4
Al	5	10.5	900	Bel ₂	All ₃
Si	6	0.0072	800	BeBr ₂	SiBr ₄
H2	7	3.E-03	2300	Bel ₂	HI
Tharmal Dec.	8	3.E-04	2300	Bel ₂	2

The Kc Valuse of
Reduction by Na or Mg
are very big, but their p It
oducts NaX or MgX2 are
solid to be separated from
Be inside Hot Cell.

Partial pressure of AlBr₃,TiBr₄ and ZrBr₄ are not comparatively large. By the way, the Melting point of CoBr₂ is about 678°C, higher than the Boiling point of BeBr₂, 520°C. At the process to make BeBr₂, the separation of Co-60 is not so difficult.

Percial Gas Pressures of AlX₃,TiX₄,SiX₄ S i ad ZrX₄ in Reductions are evaluated

The Kc Valuse of
Thermal Deconposition
sand Reduction by H2
are very small.

2. Partial Pressure of Products

Assumptions

 $[BeX_2] = p(BeX_2)$: parcial pressure of BeX_2

 $[MX_n] = p(MX_n)$: parcial pressure of MX_n

[M] = [Be] = 1

 $p(\text{BeX}_2) + p(\text{MX}_n) = 1 \text{ bar}(100 \text{ kPa})$

Chemical Ractions

 $BeX_2+2/3AI \Rightarrow Be+2/3AIX_3$

 $BeX_2+1/2Ti \Rightarrow Be+1/2TiX_4$

 $BeX_2+1/2Si \Rightarrow Be+1/2SiX_4$

 $BeX_2+1/2Zr \Rightarrow Be+1/2ZrX_4$

General Expression

 $BeX_2 + (2/n) M \Rightarrow Be+(2/n) MX_n$

[Be] *
$$[MX_n]^{(2/n)} = K_c * [BeX_2] * [M]^{(2/n)}$$

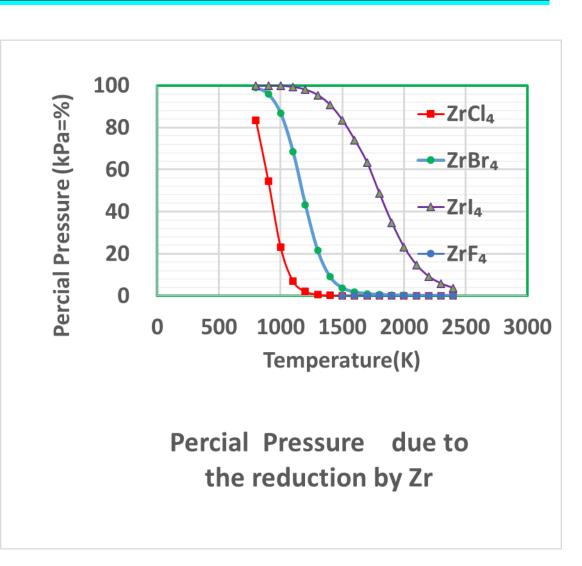
Equation of Parcial Pressures

$$p(\mathsf{MX}_n) = (K_c * p(\mathsf{BeX}_2)^{(n/2)} \qquad K_c = \mathsf{EXP}(-\Delta G/RT)$$

$$p(MX_n) + p(BeX_2) = 1 bar$$

An Example of Partial Pressure of Products

Reduction by Zr


Reduction Equations

$$BeCl_2+1/2$$
) $Zr \Rightarrow Be+(1/2)ZrC$

$$BeBr_2+(1/2)Zr \Rightarrow Be+(1/2)ZrBr_4$$

$$Bel_2+(1/2)Zr \Rightarrow Be+'(1/2)Zrl_4$$

$$BeF_2+(1/2)Zr \Rightarrow Be+(1/2)ZrF$$

Comparison of Partial Pressure of Products

Table 2-1 selecting the highest partial pressure for each method

leduction methd	rRank of	Highest	Tempe	Beryllium	Product of
	P(MXn)	PXn)(kPa)	(K)*	Halide	Reductiom
Zr	1	99.96	900	Bel ₂	Zrl ₄
Al	2	91.1	900	Bel ₂	AIIз
Ti	3	37.5	900	Bel ₂	Til4
Si	4	5.35E-04	800	BeBr ₂	SiBr ₄

Table 2-2 Selecting the second highest partial pressure

Reduction metho	rRank of P(MXn)	2nd Highest PXn)(kPa)	Tempe (K)*	Beryllium Halide	Product of Reductiom
Zr	1	99.07	800	BeB _{r2}	ZrBr ₄
Al	2	59.9	800	BeBr ₂	AIBr ₃
Ti	3	29.62	1100	BeB _{r2}	TiBr ₄
Si	4	2.8E-08	900	Bel ₂	Sil ₄

Partial pressure of SiBr₄ are very small.

Partial pressure of All₃, Til₄ and Zrl₄ are comparatively large. However, the boiling point of Col₂ is 570°C, which is lower than that of Bel₂ of 590°C.

At the process to make Bel₂, the separation of Co-60 from Bel₂ may be difficult.

Partial pressure of AlBr₃,TiBr₄ and ZrBr₄, and the Melting point of CoBr₂ is 678°C, an and the Boiling point of BeBr₂ of 520°C.

At the process to make BeBr₂, the separation of Co-60 is not difficult.

Summary(1/2)

1. The equilibrium constants (hereafter referred to as Kc-Value) of the reduction methods for beryllium halides studied in this research, ordered from highest to lowest, are as follows:

Na > Mg > Ti > Zr > TiAl >> Si > H₂ > thermal decomposition

- 2. The K-Values for reduction using H₂ or thermal decomposition are extremely low, and practical application is considered infeasible unless the reaction products are actively removed.
- 3. The Kc-Values for reduction using Na and Mg are extremely high, but unless the process is operated at high temperatures (above 1300°C), the reaction products remain as solids mixed with metallic beryllium.

Summary(2 / 2)

- 4.Based on the results of this study, using BeBr₂ and reducing with Zr was evaluated to be the most suitable method among methods studied.
- 5. For a more accurate selection of beryllium halide Reduction, investigation s are required as follows. Chemical reaction rate of the reduction reaction
- Configuration and cost assessment of the reduction apparatus
- Consideration of processes before and after the reduction stage