IGORR22/IAEA TM ON INTEGRATED MANAGEMENT SYSTEMS FOR THE SUSTAINABLE SAFE OPERATION AND EFFECTIVE UTILIZATION OF RESEARCH REACTORS, JUNE 16-19, 2025, MITO, JAPAN

IMPLEMENTING AN INTEGRATED MANAGEMENT SYSTEM AT THE JM-1 RESEARCH REACTOR

HAILE DENNIS, JOHN PRESTON

ICENS, University of the West Indies

ACKNOWLEDGING JOHN PRESTON

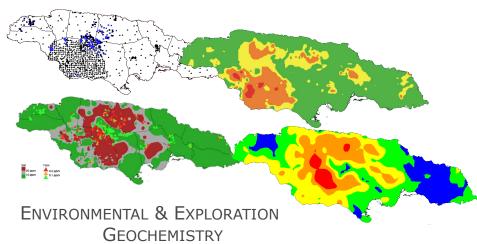
PRESENTATION OUTLINE

- The JM-1 Research Reactor
- IMS Objectives
- IMS Implementation
- Computer-based tool (NURIMS)
- Impressions
- Lessons learnt

THE JM-1 RESEARCH REACTOR

- The JM-1 research reactor is the only nuclear reactor in the English-speaking Caribbean.
- Commissioned with HEU fuel (93% ²³⁵U) in 1984.
- Of the seven SLOWPOKE reactors, JM-1 is the only one commissioned outside of Canada and the last one commissioned with HEU fuel.

Successfully converted to LEU fuel in 2015 via collaboration between the US DOE, through the Argonne National Laboratory and ICENS within the framework of the NNSA's M³ program with the assistance of the IAEA.


THE JM-1 RESEARCH REACTOR

Commissioned :	March 1984
Power :	~20 kW
Maximum Excess Reactivity :	+ 4.0 mK
Flux :	1 x 10 ¹² n.cm ⁻² s ⁻¹
Core:	UO ₂ pellets 19.9% ²³⁵ U Zircaloy cladding
Reflector:	Primary: Beryllium metal Secondary: Light water
Moderator :	Light Water
Cooling :	Natural convection
Irradiation Sites :	5 inner and 1 outer

THE JM-1 RESEARCH REACTOR

HEALTH

AGRICULTURE, SOILS & FOOD SECURITY

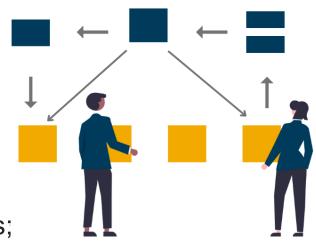
IMS OBJECTIVES

In 2015 a decision was made to integrate the management of the reactor operations to ensure that strategic decisions were not made in isolation. Specific objectives of the IMS are to:

- Develop a process-based approach to ensuring the safe and sustained operation of the JM-1 Research Reactor facility in all stages of its life;
- Ensure a safe environment for the facility staff, the public and the environment by fostering a systematic approach to managing its operations;
- Ensure systems and infrastructure are maintained (modified, refurbished, upgraded) over the lifetime of the facility;
- Assist the facility in complying with its regulatory requirements;
- Assist the facility in maximizing the safe utilization of the research reactor;
- Assist in knowledge management over the life of the reactor;
- Foster a data-driven approach to managing all aspects of the operation of the reactor and facility.

IMS IMPLEMENTATION STRATEGIES

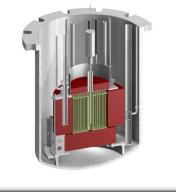
- Engage management and staff at all stages of the implementation
- Utilize a graded approach to ensure a fit-for-purpose system
- Determine process/activities/tasks constructs for all activities related to reactor operation on a step-by-step basis
- Implement real-time monitoring of operating parameters to provide the basis for a data driven approach to the management and operation of the reactor
- Establish clearly defined acceptance criteria for all surveillance activities
- Utilize a computer-based information management system.
- 'Not let the perfect be the enemy of the good'



Step 1 – Process Mapping

- Identify all processes including scope & purpose;
- Identify process owners;

- Identify the various process activities and tasks (what work is done, who carries it out and how it is performed);
- Identify the resource needs (roles, responsibilities, training needs and equipment);


Process Map

MANAGEMENT

- DOCUMENTATION
- ☐ REGULATORY COMPLIANCE
- OPERATIONS REVIEW
- ☐ SELF ASSESSMENTS
- PROCESS AUDITS

CORE

- REACTOR OPERATION
- SAMPLE IRRADIATION

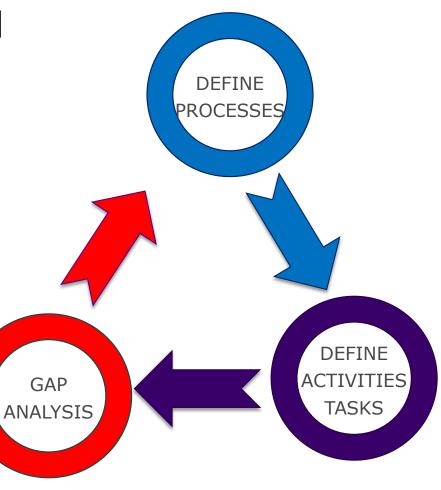
SUPPORT

- ☐ RADIATION PROTECTION
- **■** EMERGENCY RESPONSE
- ☐ CONTROLLED MATERIALS
- ☐ HUMAN RESOURCES
- MAINTENANCE
- SAFETY/SECURITY

Step 2 – Identify Activities and Tasks

Identify process activities and tasks. These were taken from the following existing documents:

- SAR
- OLCs
- Reactor Operation and Maintenance Manual
- Quality Manual
- Physical & Computer Security Policies
- Emergency
 Preparedness &
 Response Policy


- Radiation Protection Policy
- Radioactive Waste Management Policy
- Standard Operating Procedures for Sample Analyses
- Training Manual

Step 3 – Gap Analysis

Perform a gap analysis to determine what processes have not yet been defined. Consider those that were being managed by procedures first, as the low hanging fruit.

Go to step 1 and loop until all activities that were being managed with procedures have been converted.

PROCESS OBJECTIVES (EXAMPLES)

RADIATION PROTECTION

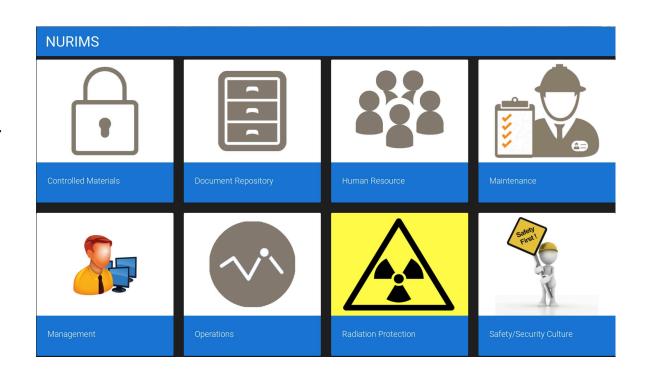
- To establish a system for monitoring occupational exposure of personnel and the environment in supervised and controlled areas;
- To establish a system for monitoring the radiation exposures in public areas in and around the facility;
- To establish a system of assessment and review of occupational exposures;
- To report the findings of exposures to all interested parties.

CONTROLLED MATERIALS

- To implement a system of control over radioactive sources and devices in which the sources are incorporated;
- To implement a categorization of sources based on the potential injury to people and the environment that could result if those sources are not safely managed or securely protected;
- To implement a system for the safe and secure storage of radioactive waste;
- To implement a system of assessment and auditing of the process activities and results to improve the process.

COMPUTER-BASED TOOL

NURIMS

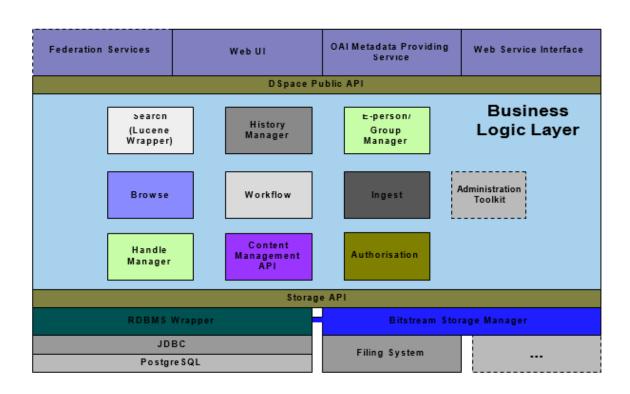

NUCLEAR AND

RADIOLOGICAL

INTEGRATED

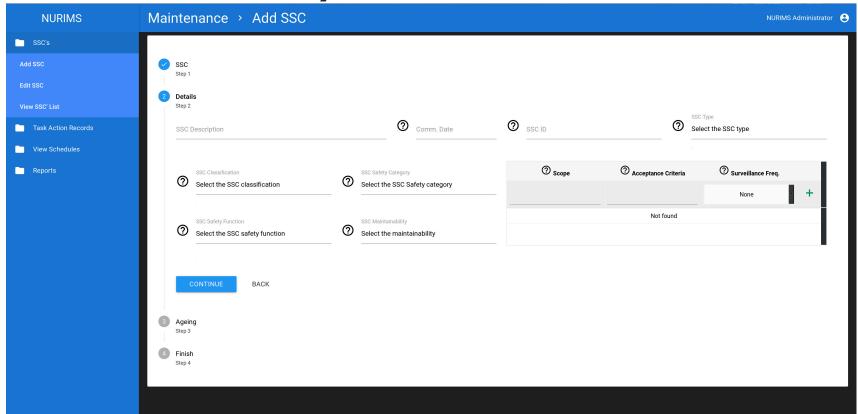
MANAGEMENT

SYSTEM

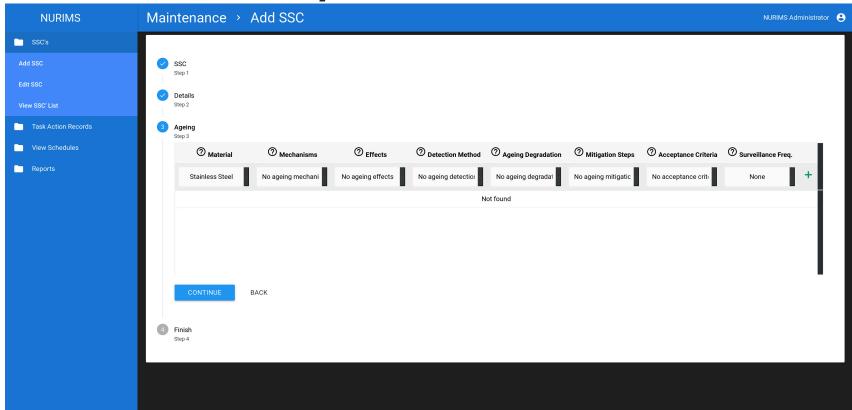


COMPUTER-BASED TOOL

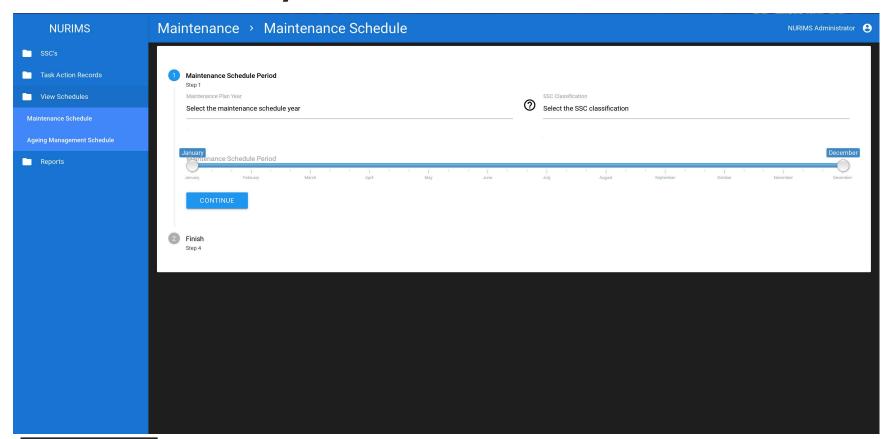
NURIMS


The base system is a digital library DSPACE, which:

- captures items in any format.
- indexes digital items so they can be easily retrieved,
- preserve the digital content over the long term.



MAINTENANCE/ISI PROCESS - ADD SSC



MAINTENANCE/ISI PROCESS - ADD SSC

MAINTENANCE/ISI PROCESS – GENERATE PLAN

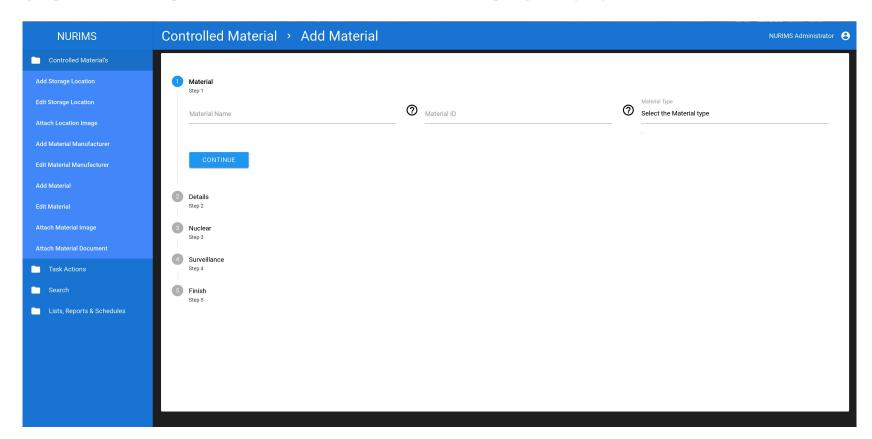
MAINTENANCE/ISI PROCESS – GENERATE PLAN

JM-1 SLOWPOKE Maintenance Plan JANUARY - DECEMBER 2025

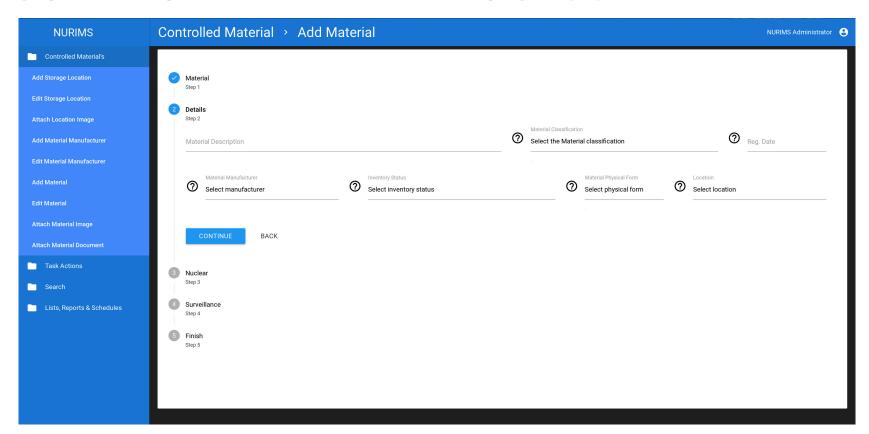
NURIMS 2025

Page: 3

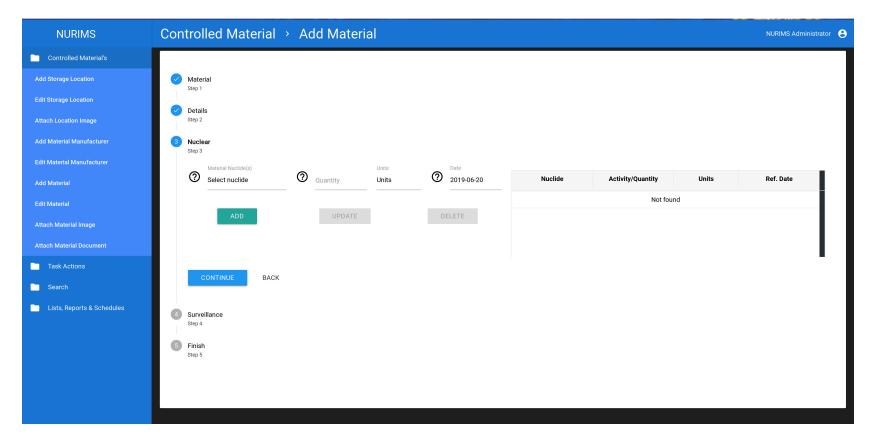
Table of Contents

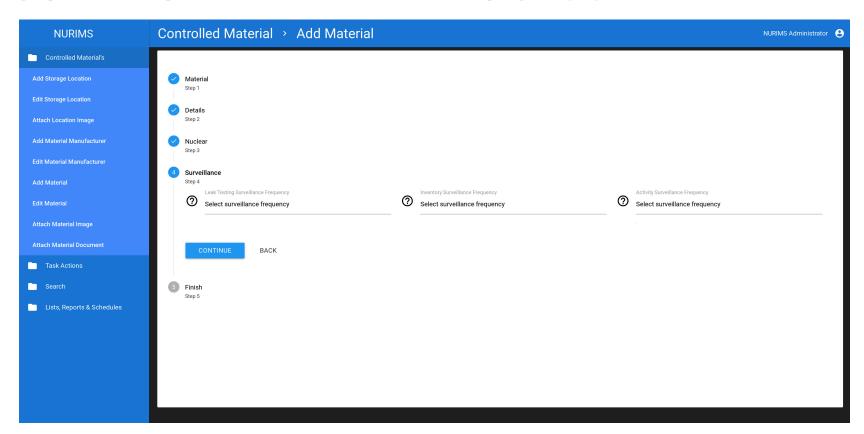

Tables	
Structures, Systems and Component	rs (SSC)
Maintenance Schedule	
Weekly schedule	
Monthly schedule	
Quarterly schedule	
Biannual schedule	
Annual schedule	

Maintenance Schedule


Weekly schedule

Week Dec 31 - Jan 4							
SSC	Maintenance Scope	Acceptance Criteria	Completed	Accepted	Initials		
POOLCHILLER	water temperature control	10C to 15C chilled water	MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY	☐ Yes☐ No			
	chilled water flow rate	6-7 GPM	☐ MONDAY ☐ TUESDAY ☐ WEDNESDAY ☐ THURSDAY ☐ FRIDAY	☐ Yes ☐ No			





CONTROLLED MAT. PROCESS- GENERATE LIST

Report Date: 2025-01-29

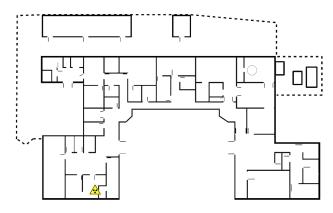
Page: 1

International Centre for Environmental and Nuclear Sciences
2 Anguilla Crescent
Kingston 7, Jamaica

Controlled Materials List

Abstract

This report lists the radioactive and nuclear materials and associated nuclear items under control at the ICENS.


Summary		
Material Types		
Sealed Radioactive Source		
Unsealed Radioactive Source		
Controlled Nuclear Item	3	
Nuclear Material	3	

23650-HC-8507: Cs-137 Industrial Source

Record :	nurims/1572						
Name :	Cs-137 Industrial Source						
ID:	23650-HC-8507		2365040 6505				
Description :	Cs-137 Industrial Source		CHEMISTRY				
Manufacturer :	Unknown		Unknown		Unknown		(uni > 1
Registration Date :	2022-02-04		MINOSTON SE				
Form :	Solid						
Classification:	Category 5, Most unlikely to be dangerous to the person						
Inventory Status :	DisUsed						
Storage Location :	-						
Surveillance :	Inventory: Annual Leak Testing: Annual Activity Testing: None						
Nuclides :	Nuclide	Activity/Quantity	Ref. Date				
	Cs-137		2022-02-04				

TLD Reader 0

Harshaw 6600 TLD reader

RADIATION PROTECTION – DOSE OPTIMIZATION

Reactor Ceiling

ID: 971098

From: 2019-03-01T07:51:26 To: 2019-03-24T10:03:14

Count: 423523

Minimum: 0.10 µSv/hr

Maximum: 12.70 µSv/hr

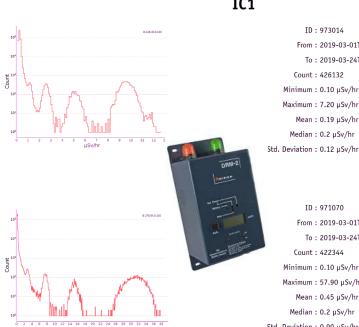
Mean: 0.37 µSv/hr Median : 0.2 μSv/hr

Std. Deviation: 1.15 µSv/hr

Reactor

ID: 971073

From: 2019-03-01T07:51:24 To: 2019-03-24T10:03:13


Count: 419822

Minimum: 0.10 µSv/hr

Maximum: 37.90 μSv/hr

Mean: 0.72 μSv/hr Median: 0.2 μSv/hr

Std. Deviation: 3.78 µSv/hr

IC1

ID: 973014

From: 2019-03-01T07:51:24

To: 2019-03-24T10:03:14

Count: 426132

Minimum: 0.10 µSv/hr

Maximum: 7.20 µSv/hr

Mean: 0.19 µSv/hr

Median: 0.2 µSv/hr

ID: 971070

From: 2019-03-01T07:51:22

To: 2019-03-24T10:03:12

Count: 422344

Minimum: 0.10 uSv/hr

Maximum: 57.90 µSv/hr

Mean: 0.45 µSv/hr

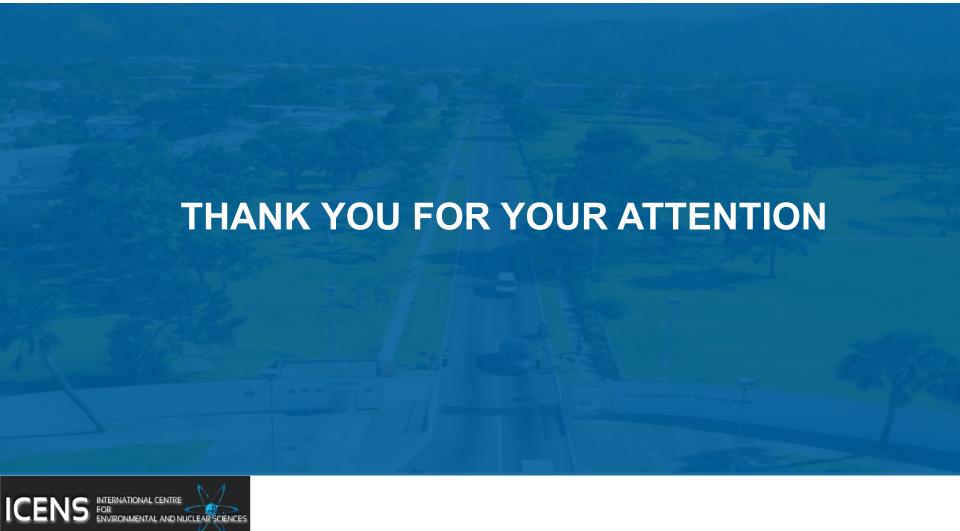
Median: 0.2 µSv/hr

Std. Deviation: 0.99 µSv/hr

REACTOR OPERATION DASHBOARD

PROVIDES REAL TIME STATUS OF RADIATION AREA MONITORS AND REACTOR OPERATING STATUS TO ALL AREAS OF THE FACILITY.

IMPRESSIONS


- Implementation of the IMS has been instrumental in re-evaluating and reestablishing the bases for all aspects of the reactor and facility operations.
- The adoption of an integrated process-based approach to managing the operations of the research is aimed at enhancing reliability and availability of the reactor.
- The use of computer-based tools is key to realizing efficiencies especially in situations of small staff numbers and high staff turnover.
- The use of the IMS in relation to reactor utilization has provided new insights into the multiple factors that must be managed to enhance reactor utilization.

LESSONS LEARNT

- Engage all stakeholders early in the process.
- Solicit feedback periodically during development and implementation.
- Moving from a procedural management system towards a processbased one should be considered in the same realm as a change in culture and thus will require a high level of effective and consistent communication.

