Nuclear fuel assembly as a material irradiation position at research reactor LVR-15

Marek Mikloš, Jaroslav Šoltés, Ján Milčák

22nd IGORR Conference, 15-19th of June 2025, Mito, Japan

Content


Short history of nuclear in Czech Republic

LVR-15 research reactor

- Purpose and main utilization
- Devices for irradiation

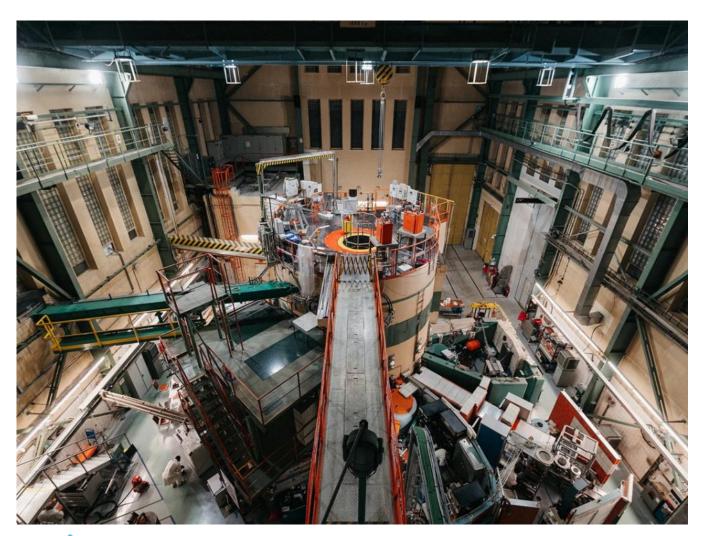
Nuclear fuel assembly as an irradiation position

Summary and future outlooks

History of LVR-15 research reactor

- 1957: commissioning of the first research reactor in Czechoslovakia VVR-S (2 MWt) at the Nuclear Physics Institute in Řež.
- 1964: reactor refurbishment and power uprate up to 4MWt (new fuel EK-10 with 10% enrichment)
- 1974: power uprate up to 10MWt (new fuel IRT-2M with 80% enrichment)
- 1988–1989: Major reconstruction of VVR-S to LVR-15.
 - Reactor vessel extraction, full system modernization to enhance operational safety.

1995-1998: new fuel IRT-2M with 36% of enrichment, and transition to


permanent operation

2011: new fuel IRT-4M with 19,7% enrichment

Research reactor LVR-15

Reactor type tank

Pressure atmospheric

Average temperature 45 °C

Coolant demineralized water

Reflector beryllium

Nominal power 10 MWt

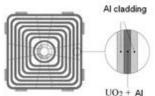
Thermal flux $1.5 \times 10^{14} \,\text{n/cm}^2\text{s}$

Fast flux $2.5 \times 10^{14} \,\text{n/cm}^2\text{s}$

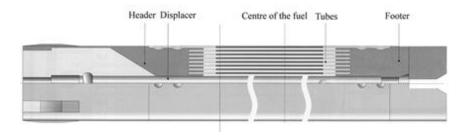
LVR-15 reactor operation

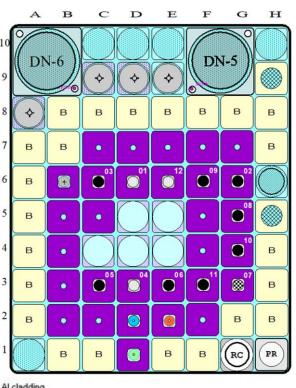
Neutron flux and DPA depend on core setup, fuel depletion and cycle setup

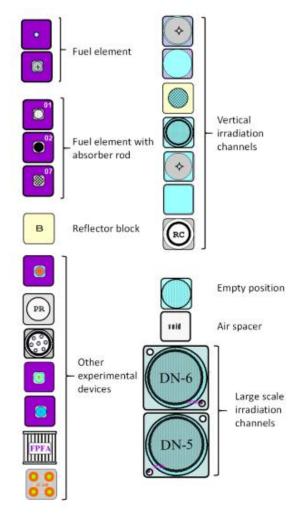
Can slightly changed cycle by cycle


Typical usability: 200 EFPD

- 25-33 days of irradiation cycle, 14-20 days of outage
- Approx. 6-7 cycles per year


Fuel


- U235 Type IRT-4M
- Enrichment 19,75 %

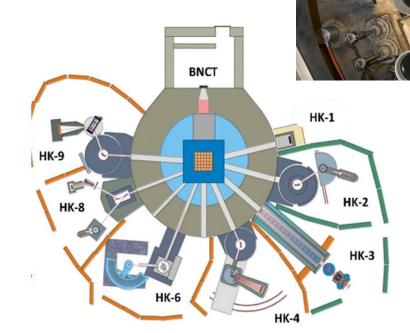

IRT-4M 8-tube assembly

LVR-15 reactor utilization

Material research, no fuel irradiation

- Irradiation rigs: standardized, special purpose rigs
- Past experience with in-pile water loops: BWR, PWR
- Currently in operation out-of-pile loops: SCWL, HTHL

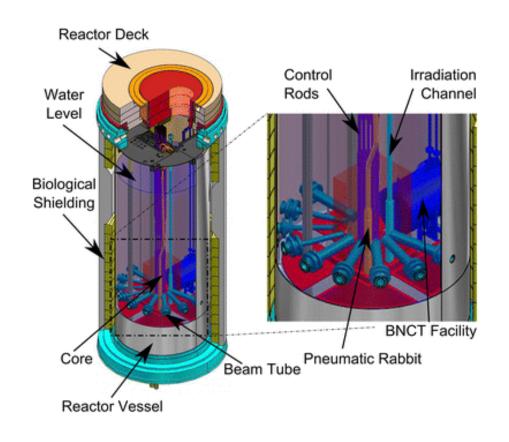
Isotope production (medical, industrial)

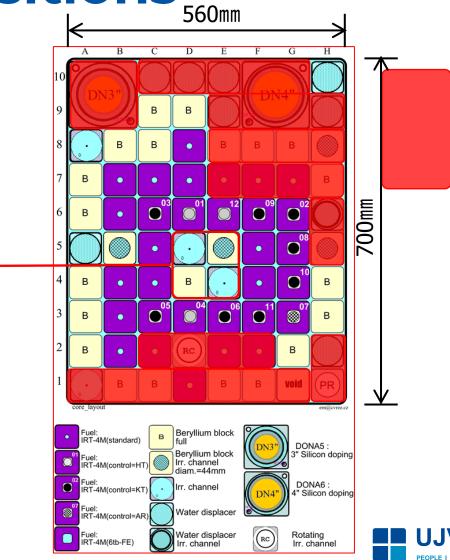

Neutron Transmutation Doping

Rotating rigs for Si crystal ingots

Neutron beams channels

9 horizontal channels



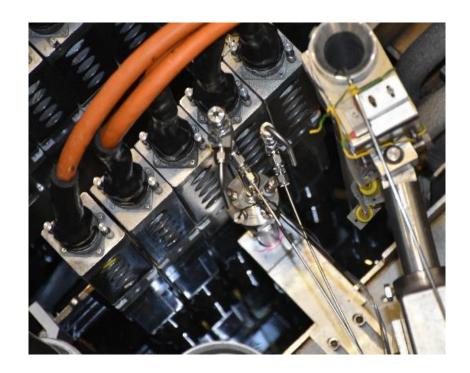


LVR-15 irradiation positions

Center

Current LVR-15 irradiation devices

Capsule type


- For isotope production or low fluence requirements material irradiation
- Dry or wet (depend on requested spectra)
- Static or rotation during irradiation
- No TCs, only passive monitors

CHOUCA type rig

- For standardized tests
- Inert gas, electrical heaters
- Unique sample holder for each irradiation

Single purpose rigs

- Nonstandardized unique designs
- Gen IV. and fusion applications
- Low fluence rigs (concrete, aggregates)
 - Inert gas, temperature controlled by gas gap setup and gas mixture control, placed at the core edge or out-of-core

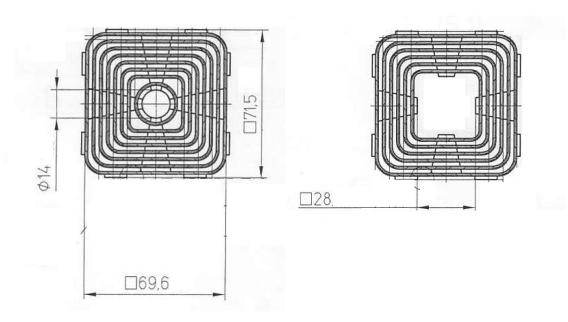
New material irradiation needs

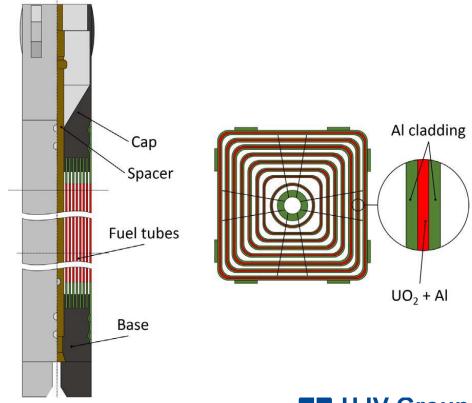
Original utilization of LVR-15 reactor was for basic neutronic studies and RPV steel studies -> no need for extra high fluences

Production of radioisotopes came out as a worldwide need -> requirements for higher fluxes and constant access

 Not original purpose of the reactor -> need for core load redesign -> central trap was designed, and currently is used for Mo-99 production

After F1NPP accident and HBWR (Norway) closure, a need for Accident Tolerant Fuel cladding material development came out


 LVR-15: central trap was already occupied. Therefore CVR find a position with higher fluxes -> nuclear fuel assembly IRT-4M

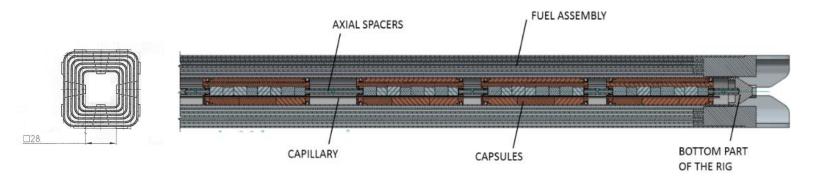


IRT-4M nuclear fuel assembly

- Plate type tube assembly with UO₂-Al composition
- 19.7 % U235 enrichment, active high 60 cm
- Eight-tube fuel assembly 300 g U235
- Six-tube fuel assembly 263.8 g U235

High dpa rig - material irradiation

Rig placed inside the LVR-15 fuel assembly (positions: D1, D2, E1, E2)


Aluminum tube with 28 mm outer diameter

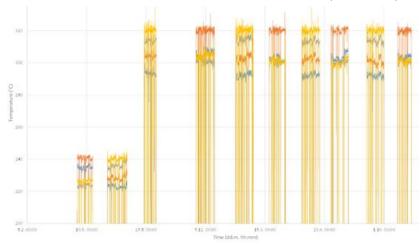
Heated by gamma and neutron interaction

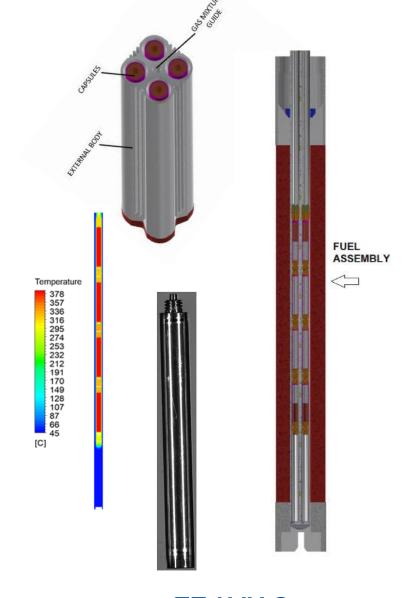
- Temperature control by gas mixture composition (He-N2)
- Up to 370 °C

Specially design to achieve higher neutron fluences

~1.0 dpa / year

C) DETAIL ON THE BOTTOM PAR





ATF cladding creep rig

Developed for INCA project within FIDES-II framework

- OKaP irradiation rig
- 16 sample positions (75 mm clad tube segments)
- Up to 12 pressurized samples
- Temperature achieved by internal copper heaters, controlled by gas gap and gas mixture/flow
- On-line temperature monitoring at upper level (4TCs)

Conclusion

Lots of development and updates were done since 1955

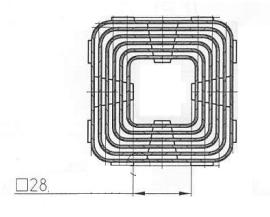
 commissioning of VVR-S -> refurbishment a power uprate, LVR-15 -> several fuel types implemented -> reactor utilization changed due to isotopes production needs and material testing requirements

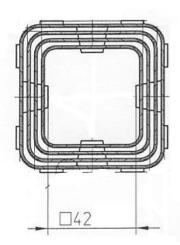
Irradiation devices needed to be adjusted according to the needs

Capsules, single purpose rigs, experimental corrosion loops, standard chouca-type rigs

ATF cladding demands required new irradiation approach at LVR-15

 OKaP-type rig placed into the LVR-15 fuel assembly was developed, for reaching higher fluxes




Next development

OKaP type rig update

- Combination of TCs and SiC passive monitors
- ROKaP 7 TCs including 9 pressurized samples
 - Irradiation started on 6th of June 2025
- SOKaP 8TCs with tube samples with different dimensions
 - Irradiation started on 18th of August 2024
- Calorimetry measurement for better understanding of gamma heating
 - Irradiation test planed in 12/2026-02/2027
- New design for 4-plate assembly
 - 15% lower fluxes, however more space
 - Better temperature control

Thank you ありがとうございました

ありがとうございます

marek.miklos@cvrez.cz

