

Institute of Nuclear Physics Academy of Sciences of Uzbekistan

Development of Nuclear Technologies in the Institute of Nuclear Physics Uzbekistan Academy of Sciences

Ilkham SADIKOV¹
Toshikazu HOSODA²

- 1) Director Institute of Nuclear Physics, Uzbekistan
- 2) Chairman and CEO, Chiyoda Technol Co., Japan

Satellite map of INP

Territory: total – 314 ha; scientific -industrial zone - 44 ha

Basic Nuclear Physical Fasylities

Gamma Facility

Cyclotron U-150-II

22 MeV Protons

Electron Accelerator

8 MeV Electrons

Reactor power – 10 MW Neutron flux– 1·10¹⁴·n/cm²·s

Co-60 120 kCi Neutron Generator

14 MeV Neutrons 1·10¹⁰ ·n/см²·s

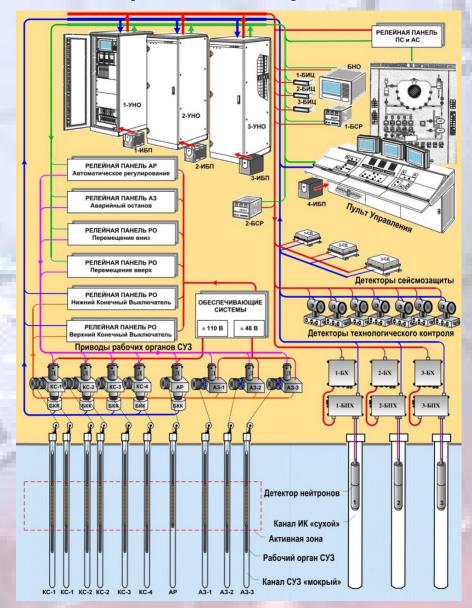
Cooperation with the IAEA

Modernization of reactor power supply systems

=48 V и =110 V

UPS-80kW

UPS-160kW



Alternating current switchboard

transformers and 40 kW diesel generator

Modernization of the control and protection system

Cooperation with the IAEA

Modernization of the Radiation Monitoring System

Shipment of spent nuclear fuel

Developed of the Production Technologies

More than 60 types of pharmaceutical products are produced, including about 20 ready-to-use radiopharmaceuticals

Reactor radionuclides:

<u>P-32, P-33, S-35, Cr-51, Mn-54, Fe-55, Fe-59, Co-58, Co-60, Mo-99, Y-90, I-125, I-131, Pm-147, Sm-153, Ho-166, Lu-177, Ta-182, W-188, Ir-192, Au-198, Hg-203</u>

Cyclotron radionuclides:

Co-57, Zn-65, Ga-67, Ge-68, Pd-103, Ce-139

Radionuclide generators:

Ge-68 \rightarrow Ga-68, Mo-99 \rightarrow Tc-99m, Sn-113 \rightarrow In-113m, W-188 \rightarrow Re-188

⁻ Radioisotope products, the production of which is established at the INPAS RUz;

⁻ Radioisotopes, the production technology of which has been developed at the INP RUz, but production has not been established

UZBEKSTAN ACADEMY OF SCIENCE INSTITUTE OF NUCLEAR PHYSIC

RADIOISOTOPE PRODUCTS AND

IMMUNOLOGICAL TEST SYSTEMS

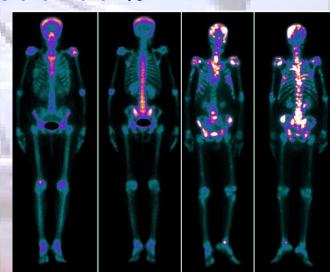
Generator Nominal Activity:

18.5 GBq / 0.5 Curie

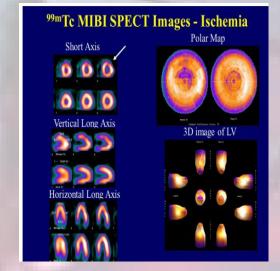
11.1 GBq / 0.3 Curie

7.4 GBq / 0.2 Curie

5.5 GBq / 0.15 Curie

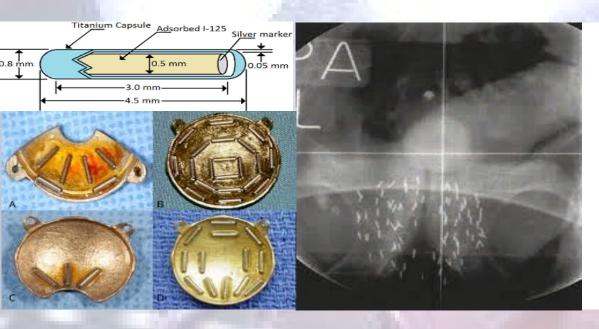

Radiochemical purity- not lees that- 99.0%

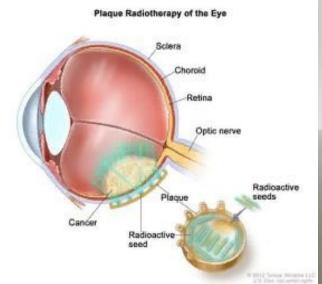
Radionuclide impurities:


Mo-99 - no more than-0.01%

UZBEKSTAN ACADEMY OF SCIENCE INSTITUTE OF NUCLEAR PHYSIC RADIOISOTOPE PRODUCTS AND

IMMUNOLOGICAL TEST SYSTEMS


odine-125

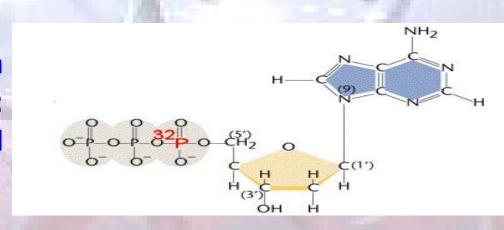

Specification of the substance «Solution of sodium iodide with Iodine-125, carrier free»:

- Radioactive concentration 150-1500 mCi/ml
- Specific Activity— not less than-17,2 Ci/mg
- Radiochemical Purity not less than 99,0%
- -Concentration of Iodine-126,- no more than- 1 x10⁻⁶ %

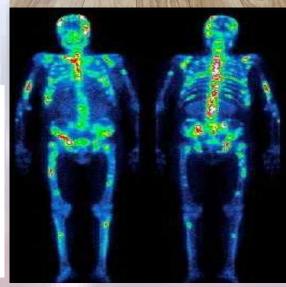
Up to 3000 Curies are produced each year.

The production capacity allows the volume to be increased by 2-2.5 times.

UZBEKSTAN ACADEMY OF SCIENCE NSTITUTE OF NUCLEAR PHYSIC


Phosphorus-32

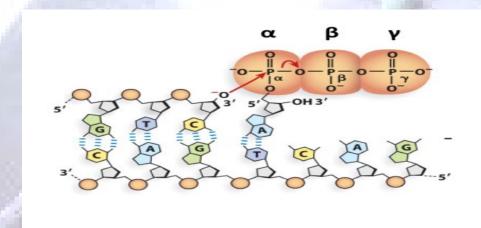
UNOLOGICAL TEST SYSTEMS



- Radioactive concentration 100-2000 mCi/ml
- Specific Activity- not less than- 8500-9000 Ci/mmol
- Radiochemical Purity not less than 99,0%
- Radionuclide admixtures P-33, % no more than 0,01 %

Radiopharmaceutical based on the radionuclide phosphorus-32: Sodium phosphate dibasic, labeled with phosphorus-32, for injection

UZBEKSTAN ACADEMY OF SCIENCE **NSTITUTE OF NUCLEAR PHYSIC**


RADIOISOTOPE PRODUCTS AND

MUNOLOGICAL TEST SYSTEMS

Specification of the substance « Ortophosphoric acid labeled PHOSPHORUS-33, carrier free» in 0,04 M HCl solution:

- Radioactive concentration 100-2000 mCi/ml
- Specific Activity— not less than- not less than -4560 Ci/mmol
- Radiochemical Purity not less than 99,0%
- Radionuclide admixtures P-32, % no more than 0,01 %

UZBEKSTAN ACADEMY OF SCIENCE NSTITUTE OF NUCLEAR PHYSIC

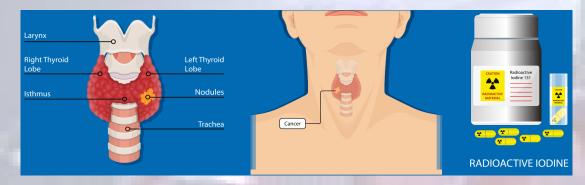
RADIOISOTOPE PRODUCTS AND IMMUNOLOGICAL TEST SYSTEMS

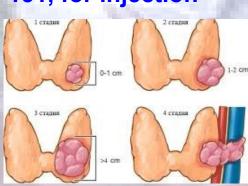
Specification of the substance « Sulfuric acid, labeled S-35, carrier free» in water solution:

- Radioactive concentration 6000 mCi/ml
- Specific Activity— not less than-1400-1500 Ci/mmol
- Radiochemical Purity not less than 99,0%
- Radionuclide admixtures P-32, K-42, % no more than 0,01 %

UZBEKSTAN ACADEMY OF SCIENCE INSTITUTE OF NUCLEAR PHYSIC

RADIOISOTOPE PRODUCTS AND IMMUNOLOGICAL TEST SYSTEMS




Specification of the substance «Solution of sodium iodide with lodine-131, carrier free»:

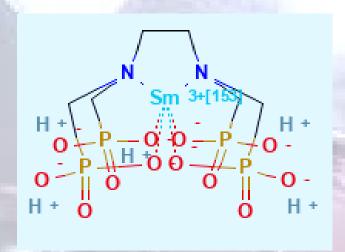
- Radioactive concentration 1000-10000 mCi/ml
- Specific Activity- not less than- 600 Ci/mmol
- Radiochemical Purity not less than 97,0%
- radionuclide purity more than 99.99%

Radiopharmaceuticals based on the radionuclide iodine-131: - -- Sodium iodide labeled with iodine-131, in isotonic solution, for injection

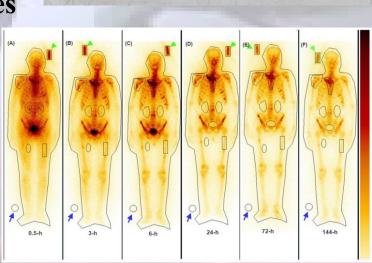
- Rose Bengal labeled with iodine-131, for injection
- Sodium o-iodohippurate labeled with iodine-131, for injection
- Sodium iodide labeled with iodine-131, in capsules, for oral use
- Meta iodine benzylguanidine labeled with iodine-131, for injection

UZBEKSTAN ACADEMY OF SCIENCE INSTITUTE OF NUCLEAR PHYSIC

RADIOISOTOPE PRODUCTS AND IMMUNOLOGICAL TEST SYSTEMS



Specification of the substance «Samarium chloride with 153Sm» in 0,04 M HCl solution:

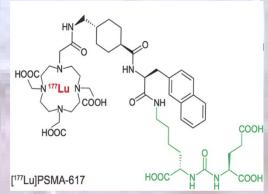

- Radioactive concentration 240 1500 mCi/ml
- Radiochemical Purity not less than 99,0%
- Radionuclide impurities,% -no more than- 3·10⁻³ %

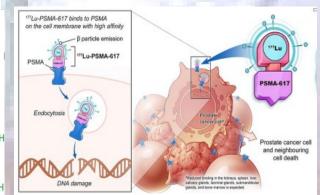
Radiopharmaceutical based on the radionuclide Samarium-153:

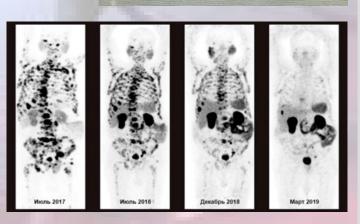
- «Samarium, ¹⁵³Sm Oxabifor» for the treatment of bone metastases

UZBEKSTAN ACADEMY OF SCIENCE NSTITUTE OF NUCLEAR PHYSIC RADIOISOTOPE PRODUCTS AND

IMMUNOLOGICAL TEST SYSTEMS

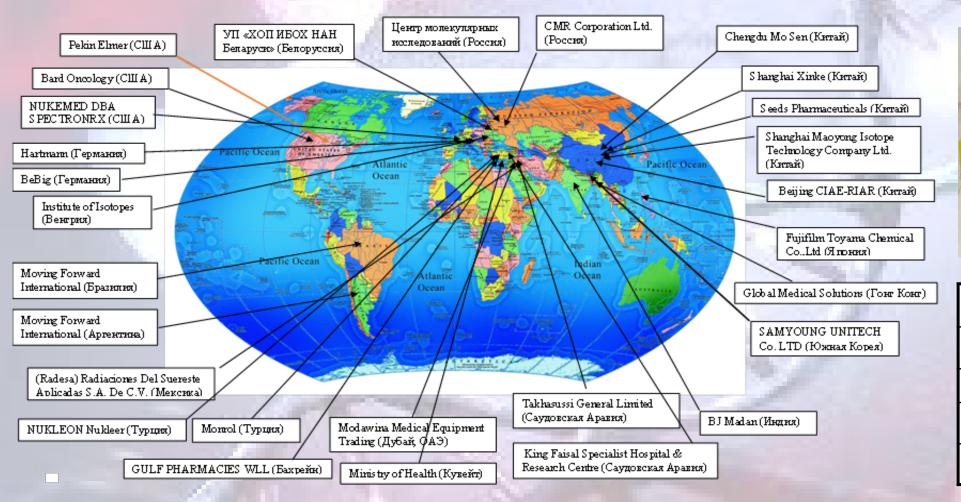



Specification of the substance ««Lutetium chloride (177LuCl3) with 177Lu carrier free» in 0,04M HCl:

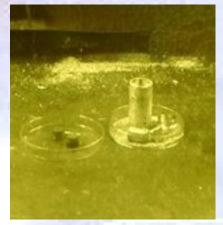

- Radioactive concentration 300 3000 mCi/ml
- Radiochemical purity not lees than 99,0%
- Specific activity- not lees than- 92,0 Ci/mg
- Inactive impurities:

Fe \leq 0,25 μ r/GBq < 0,08; Cu \leq 0,5 μ r/GBq < 0,007; Zn \leq 0,5 μ r/GBq < 0,064; Pb \leq 0,5 μ r/GBq < 0,032

- •Up to 400 curies are produced each year.
- •The production capacity allows the volume to be increased by 2-2.5 times
- Radiopharmaceutical based on the radionuclide Lutetium-177:
- -Lutetium-177-PSMA-617 for the treatment of metastatic prostate cancer




Export of Radioisotope Production


Products	2024
Radiopharmaceuticals	4,52
Cobalt-57	1,04
Colorization of topazes	0,42
Total	5,98

Operation time of the reactor

Cooperation with Chiyoda Technol Corporation

- Joint research on the production of Molybdenum-99;
- Signing of a Memorandum of Understanding on cooperation;
- Cooperation on the development of technology for obtaining Actinium-225;
- Realization of a contract to determine the concentration of radium-226 in uranium industry waste.

Perspective

	Radioisotopes for general purposes and radiopharmaceuticals	Development of technologies for obtaining of the radionuclide Terbium-161	
		Development of a technology for the production of radiopharmaceuticals based on the radionuclide Lu-177 with ethylenediamine tetramethylene phosphonic acid (EDTMP) for the treatment of early bone metastases with pain syndrome	
	Cold kit for technetium-99m generator	Tc-99m-Nanotech (based on albumin nanoparticles) for scintigraphy of the lymphatic system to confirm its integrity and differential diagnosis of venous and lymphatic obstruction.	
	Producing of the Cyclotron Radioisotopes	Installation of a new cyclotron with an energy of 30 MeV and production of cyclotron radionuclides such as F-18, Co-57, Cu-63, Ge-68, Pd-103 and I-123	
	Construction of a new research reactor with a capacity of 20-30 MW	Expanding the capabilities of nuclear technology. Increase in the number of produced radionuclides and increase of production volume up to 5 times.	

